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1 
Chapter 

Introducing 
Telecommunications 

I can still recall sitting in my first class on telecommunications as an 
undergrad—the teacher going off into a world of technical detail and I in my chair 

wondering, “What is this stuff called communications and telecommunications?” So, 
first, some simple definitions and examples—the big picture. 

1.1  Communication Systems 

1.1.1  Definition 

A communication system is, simply, any system in which information is transmitted 
from one physical location—let’s call it A—to a second physical location, which we’ll 
call B. I’ve shown this in Figure 1.1. A simple example of a communication system is 
one person talking to another person at lunch. Another simple example is one person 
talking to a second person over the telephone. 

Figure 1.1  A communication system 
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1.1.2  The Parts of a Communication System 

Any communication system is made up of three parts, shown in Figure 1.2. First is the 
transmitter, the part of the communication system that sits at point A. It includes two 
items: the source of the information, and the technology that sends the information out 
over the channel. Next is the channel. The channel is the medium (the stuff) that the 
information travels through in going from point A to point B. An example of a channel 
is copper wire, or the atmosphere. Finally, there’s the receiver, the part of the commu­
nication system that sits at point B and gets all the information that the transmitter 
sends over the channel. 

We’ll spend the rest of this book talking about these three parts and how they work. 

TRANSMITTER RECEIVER 

CHANNEL


A B 
Figure 1.2  Parts of  a communication system 

1.1.3  An Example of a Communication System 

Now, let’s run through a simple but very important example of a communication 
system. We’ll consider the example of Gretchen talking to Carl about where to go for 
lunch, as shown in Figure 1.3. 

Figure 1.3

Gretchen talking to Carl at lunch


Channel (the air) 

Windpipe 
Vocal cords 
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The Transmitter 

The transmitter, in this case, is made up of parts of Gretchen, namely her vocal cords, 
windpipe, and mouth. When Gretchen wants to talk, her brain tells her vocal cords 
(found in her windpipe) to vibrate at between 100 Hz and 10,000 Hz, depending on the 
sound she’s trying to make. (Isn’t it cool that, ever y time you talk, a part of you is 
shaking at between 100 and 10,000 times per second?) Once Gretchen’s vocal cords 
begin to vibrate, here are the three things that happen next: 

(1) the vibrations of her vocal cords cause vibrations in the air in her windpipe; 

(2) these vibrations in the air move up her windpipe to her mouth; and 

(3) as the vibrating air moves out through Gretchen’s mouth, the shape of her 
mouth and lips, and the position of her tongue, work together to create the 
intended sound. 

The Channel 

In our example, the channel is simply the air between Gretchen and Carl. The shaped 
vibrations that leave Gretchen’s mouth cause vibrations in the air, and these vibrations 
move through the air from Gretchen to Carl. 

The Receiver 

The receiver in this case is Carl’s eardrum and brain. The vibrations in the air hit 
Carl’s eardrum, causing it to vibrate in the same way. Carl’s shaking eardrum sends 
electrical signals to his brain, which interprets the shaking as spoken sound. 

The human eardrum can actually pick up vibrations between 50 Hz and 16,500 
Hz, allowing us to hear sounds beyond the range of what we can speak, including a 
variety of musical sounds. 

1.2  Telecommunication Systems 

1.2.1  Definition 

A telecommunication system is two things: (1) a communication system—that is, a 
system in which information is transmitted from one physical location, A, to a second 
physical location, B; and (2) a system which allows this information to be sent beyond 
the range of usual vocal or visual communications. Gretchen and Carl’s lunchtime chat 
would not qualify as a telecommunication system, but the telephone system which 
they used later for an afternoon talk does qualify. 
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1.2.2  Four Examples and an Erratic History Lesson 

Here are four examples of telecommunication systems, ordered chronologically to 
create what we’ll optimistically call “a brief histor y of telecommunications.” 

Smoking Up In the B.C.’s, smoke signals were sent out using fire and some smoke 
signal equipment (such as a blanket). The smoke, carried upward by the air, was seen 
by people far (but not too far) away, who then interpreted this smoke to have some 
meaning. It is said that a fellow named Polybius (a Greek historian) came up with a 
system of alphabetical smoke signals in the 100s B.C., but there are no known re­
corded codes. 

Wild Horses Until the 1850s in the U.S., the fastest way to send a message from one’s 
home to someone else’s home was by Pony Express. Here, you wrote what you wanted 
to say (the transmitter), gave the writing to a Pony Express man, who then hopped on 
his horse and rode to the destination (the channel), where the message would be read 
by the intended person (the receiver). 

Telegraph In 1844, a fellow named Samuel Morse built a device he called the tele­
graph, the beginning of the end of the Pony Express. The transmitter consisted of a 
person and a sending key, which when pressed by the person, created a flow of elec­
tricity. This key had three states: “Off” which meant the key was not pressed; “Dot,” 
which meant the key was pressed for a short time and then released; and “Dash,” 
which meant the key was pressed for a longer time and then released. Each letter of 
the alphabet was represented by a particular sequence of dots and dashes. To keep the 
time to send a message short, the most commonly used letters in the alphabet were 
represented by the fewest possible dots or dashes; for example, the commonly used “t” 
was represented by a single dash, and the much- loved “e” was represented by a single 
dot. This system of representing letters is the well-known Morse code. The channel 
was an iron wire. The electricity created by the person and the sending key (the 
transmitter) was sent along this wire to the receiver, which consisted of an audio-
speaker and a person. When the electricity entered the audio-speaker from the iron 
wire, it made a beeping sound. A “Dot” sounded like a short beep, and a “Dash” 
sounded like a longer beep. The person, upon hearing these beeps, would then decode 
the letters that had been sent. The overall system could send about two letters a 
second, or 120 letters a minute. The first words sent over the telegraph, by inventor 
Morse himself, were “What has God wrought!” (I have since wondered what Morse, 
who basically invented a simple dot-dash sending system, would have said about, oh, 
say, a nuclear bomb.) 

The Telephone The telephone was invented in 1876 by Alexander Graham Bell, 
whose first words on the phone were, “Mr. Watson, come at once, I need you.” Alex 
had just spilled batter y acid down his pants and, as you can imagine, was in quite 
urgent need of his assistant’s help. Figure 1.4 shows an illustration of two people, who 



Introducing Telecommunications ◆  5 

we’ll call Carl and Monica, using the telephone. What follows is a wordy description of 
how the telephone works. Refer to Figure 1.4 to help you with the terms. 

The transmitter consists of Monica (who is talking) and the transmitting (bottom) 
end of the telephone. Monica speaks, and her vocal cords vibrate. This causes vibra­
tions in the air,  which travel through and out  her mouth, and then travel to the 
bottom end of the telephone. Inside the bottom end of the telephone is a diaphragm. 
When the vibrations of the air arrive at this diaphragm, it, like an eardrum, begins to 
vibrate. Directly behind the diaphragm are a bunch of carbon granules. These gran­
ules are part of an electrical circuit, which consists of a 4-V source, copper wire, and 
the carbon granules. The carbon granules act as a resistor (with variable resistance) in 
the circuit. When the diaphragm is pushed back by the vibrating air, it causes the 
carbon granules (right behind it) to mush together. In this case, the granules 
act like a low-resistance resistor in the circuit. Hence, the current flowing though the 
electric circuit is high (using the well-known V = R ⋅ I rule). When the diaphragm is 
popped out by the vibrating air, it causes the carbon granules (right behind it) to 
separate out. In this case, those carbon granules are acting like a high-resistance 
resistor in the electrical circuit. Hence, the current flowing though the circuit is low. 
Overall, vibrations in the diaphragm (its “pushing back” and “popping out”) cause the 
same vibrations (frequencies) to appear in the current of the electrical circuit (via 
those carbon granules). 

The channel is a copper wire. The vibrating current generated by the transmitter 
is carried along this wire to the receiver. 

Windpipe 

Carl 

Channel (copper wire) 

Vocal 
cords 

electromagnet 

eardrum 

4v power supply 

carbon granules 
diaphragm 

Monica 

TRANSMITTER RECEIVER 

Figure 1.4 
Monica and Carl talking on a telephone 
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The receiver consists of two parts: the receiving (top) part of the telephone, and 
Carl’s ear. The current, sent along the copper wire, arrives at the top end of the tele­
phone. Inside this top end is a device called an electromagnet and right next to that is 
a diaphragm. The current, containing all of Monica’s talking frequencies, enters into 
the electromagnet. This electromagnet causes the diaphragm to vibrate with all of 
Monica’s talking frequencies. The vibrating diaphragm causes vibrations in the air, and 
these vibrations travel to Carl’s ear. His eardrum vibrates, and these vibrations cause 
electrical signals to be sent to his brain, which interprets this as Monica’s sound. 

1.3  Analog and Digital Communication Systems 

The last part of this chapter is dedicated to explaining what is meant by analog and 
digital communication systems, and then explaining why digital communication 
systems are the way of the future. 

1.3.1  Some Introductory Definitions 

An analog signal is a signal that can take on any amplitude and is well-defined at ever y 
time. Figure 1.5(a) shows an example of this. A discrete-time signal is a signal that can 
take on any amplitude but is defined only at a set of discrete times. Figure 1.5(b) 
shows an example. Finally, a digital signal is a signal whose amplitude can take on only 
a finite set of values, normally two, and is defined only at a discrete set of times. To 
help clarify, an example is shown in Figure 1.5(c). 

x(t) x(t) x(t) 

t t 0 

1 

t 
T 2T 3T 4T ... T 2T 3T 4T ... 

(a) (b) (c) 

Figure 1.5  (a) An analog signal; (b) a discrete time signal; and (c) a digital signal 
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1.3.2  Definitions 

An analog communication system is a communication system where the information 
signal sent from point A to point B can only be described as an analog signal. An 
example of this is Monica speaking to Carl over the telephone, as described in Section 
1.2.2. 

A digital communication system is a communication system where the information 
signal sent from A to B can be fully described as a digital signal.  For example, con­
sider Figure 1.6. Here, data is sent from one computer to another over a wire. The 
computer at point A is sending 0s or 1s to the computer at point B; a 0 is being repre­
sented by –5 V for a duration of time T and a 1 is being represented by a +5 V for the 
same duration T. As I show in that figure, that sent signal can be fully described using 
a digital signal. 

0 

+5v 

-5v 

s(t) 

t 

BA 
Signal sent is: 

0 
1 

t 

Can be represented by: 

1 0 1 0 

Figure 1.6  A computer sending information to another computer 
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1.3.3  And Digital Became the Favorite 

Digital communication systems are becoming, and in many ways have already be­
come, the communication system of choice among us telecommunication folks. 
Certainly, one of the reasons for this is the rapid availability and low cost of digital 
components. But this reason is far from the full stor y. To explain the full benefits of a 
digital communication system, we’ll use Figures 1.7 and 1.8 to help. 

Let’s first consider an analog communication system, using Figure 1.7. Let’s 
pretend the transmitter sends out the analog signal of Figure 1.7(a) from point A to 
point B. This signal travels across the channel, which adds some noise (an unwanted 
signal). The signal that arrives at the receiver now looks like Figure 1.7(b). Let’s now 
consider a digital communication system with the help of Figure 1.8. Let’s imagine that 
the transmitter sends out the signal of Figure 1.8(a). This signal travels across the 
channel, which adds a noise. The signal that arrives at the receiver is found in Figure 
1.8 (b).

s(t) r(t) Noise 

t t 
(a) (b) 

Figure 1.7  (a) Transmitted analog signal; (b) Received analog signal 

0 

+5v 

-5v 

s(t) 

t 0 

+5v 

-5v 

s(t) 

t 

1 10 

(a) (b) 

Noise 

Figure 1.8  (a) Transmitted digital signal; (b) Received digital signal 
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Here’s the key idea. In the digital communication system, even after noise is 
added, a 1 (sent as +5 V) still looks like a 1 (+5 V), and a 0 (–5 V) still looks like a 0 (–5 
V). So, the receiver can determine that the information transmitted was a 1 0 1. Since it 
can decide this, it’s as if the channel added no noise. In the analog communication 
system, the receiver is stuck with the noisy signal and there is no way it can recover 
exactly what was sent. (If you can think of a way, please do let me know.) So, in a 
digital communication system, the effects of channel noise can be much, much less 
than in an analog communication system. 

1.3.4  Making It Digital 

A number of naturally occurring signals, such as Monica’s speech signal, are analog 
signals. We want to send these signals from one point, A, to another point, B. Because 
digital communication systems are so much better than analog ones, we want to use a 
digital system. To do this, the analog signal must be turned into a digital signal.  The 
devices which turn analog signals into digital ones are called source coders, and we’ll 
spend all of Chapter 4 exploring them. In this section, we’ll just take a brief peek at a 
simple source coder, one that will turn Monica’s speech signal (and anyone else’s for 
that matter) into a digital signal. The source coder is shown in Figure 1.9. 

It all begins when Monica talks into the telephone, and her vibrations are turned 
into an electrical signal by the bottom end of the telephone talked about earlier. This 
electrical signal is the input signal in Figure 1.9. We will assume, as the telephone 
company does, that all of Monica’s speech lies in the frequency range of 100 Hz to 
4000 Hz. 

The electrical version of Monica’s speech signal enters a device called a sampler. 
The sampler is, in essence, a switch which closes for a brief period of time and then 
opens, closing and opening many times a second. When the switch is closed, the 
electrical speech signal passes through; when the switch is open, nothing gets 
through. Hence, the output of the sampler consists of samples (pieces) of the electrical 
input. 

Quantizer Symbol-to-bit 
MapperSampler 

Monica's speech signal 

Figure 1.9  A simple source coder 
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As some of you may know (and if you don’t, we’ll review it in Chapter 4, so have 
no worries), we want the switch to open and close at a rate of at least two times the 
maximum frequency of the input signal. In the case at hand, this means that we want 
the switch to open and close 2 × 4000 = 8000 times a second; in fancy words, we want a 
sampling rate of 8000 Hz. 

After the switch, the signal goes through a device called a quantizer. The quan­
tizer does a simple thing. It makes the amplitude of each sample go to one of 256 
possible levels. For example, the quantizer may be rounding each sample of the 
incoming signal to the nearest value in the set {0, 0.01, 0.02, ..., 2.54, 2.55}. 

Now, here’s something interesting. There is a loss of information at the quantizer. 
For example, in rounding a sample of amplitude 2.123 to the amplitude 2.12, informa­
tion is lost. That information is gone forever. Why would we put in a device that 
intentionally lost information? Easy. Because that’s the only way we know to turn an 
analog signal into a digital one (and hence gain the benefits of a digital communication 
system). The good news here is engineers (like you and me) build the quantizer, and 
we can build it in a way that minimizes the loss introduced by the quantizer. (We’ll talk 
at length about that in Chapter 4.) 

After the quantizer, the signal enters into a symbol-to-bit mapper. This device 
maps each sample, whose amplitude takes on one of 256 levels, into a sequence of 8 
bits. For example, 0.0 may be represented by 00000000, and 2.55 by 11111111. We’ve 
now created a digital signal from our starting analog signal. 

1.4  Congrats and Conclusion 

Congratulations—you made it through the first chapter. Just to recap (and I’ll be brief), 
in this chapter we defined the words communication and telecommunication system. 
Next, I presented a whole gang of examples, to give you a feel for a few key communi­
cation and telecommunication systems. Finally, we talked about analog and digital 
communications, discovering that most telecommunication engineers dream in digital. 
Meet you in Chapter 2! 
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Problems 

1. Briefly describe the following: 
(a) telecommunication system 
(b) communication system 
(c) the difference between a communication system and a 

telecommunication system. 
(d) digital communications 
(e) analog communications 
(f) the main reason why digital communications is preferred 

(to analog communications). 

2. Describe the function of the following: 
(a) source coder 
(b) quantizer 
(c) sampler 
(d) symbol-to-bit mapper. 





2 
Chapter 

Telecommunication 
Networks 

First, and always first, a definition. A telecommunication network is a telecommuni­
cation system that allows many users to share information. 

2.1  Telecommunication Network Basics 

2.1.1  Connecting People with Telephones 

Let’s say I have six people with telephones. I want to connect them together so they 
can speak to one another. One easy way to connect everyone is to put copper wires 
ever ywhere. By that, I mean use a copper wire to connect person 1 to person 2, a wire 
to connect person 1 to person 3, ..., a wire to connect person 1 to person 6, ..., and a 
wire to connect person 5 to person 6. I’ve shown this solution in Figure 2.1. But, ugh, 
all these wires! In general, I need N(N–1)/2 wires, where N is the number of people. 
So with only six people I need 15 wires, with 100 
people I need 49,950 wires, and with a million people 

1 

2 3

4

56 

Copper wire 

I need 499,999,500,000 wires. Too many wires. 

Let’s consider another way to connect users: 
put a switching center between the people, as 
shown in Figure 2.2. The early switchboards 
worked like this: Gretchen picks up her phone 
to call Carl. A connection is immediately made 
to Mavis, a sweet elderly operator seated at the 
switching center. Mavis asks Gretchen who 
she wants to talk to, and Gretchen says “Carl.” 
Mavis then physically moves wires at the switch­
ing center in such a way that the wire from 
Gretchen’s phone is directly connected to Carl’s 
wire, and Gretchen and Carl are now ready to begin 
their conversation. Figure 2.1 

A single wire between each phone 
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2 3 

4 

56 

Switching Center 

The manual switching center, oper­
ated by people like Mavis, was the only way 
to go until a little after 1889 when Almon B. 
Strowger, a mortician by trade, invented 
the first automatic switching center. It 
seems that Almon suddenly found that he 
was no longer getting any business. Sur­
prised, he investigated and discovered that 
the new telephone operator was also 
married to the competition ... and she was 
switching all funeral home calls to her 
husband. Determined to keep his mortician 
business alive (no pun intended), Almon 
created the first automatic switching center. 

Figure 2.2 These switching centers do not require 
Phones connected by a switching center anyone (and hence no competitor’s wife) to 
transfer calls. Entering a 7-digit phone number automatically sets up the connection at 
the switching center. Today, all switching centers are automatic. 

Just briefly, how many wires are needed by a network using a switching center? 
Only N, where N is the number of users. That’s far fewer than the many-wire system 
introduced first. 

2.1.2  Connecting More People, Farther Apart 

Let’s take this switching center idea a bit further. Consider Figure 2.3. A bunch of 
people are connected together in Fort Collins, Colorado, by a switching center in 
downtown Fort Collins. Then, in nearby Boulder, another group of people are con­
nected together by a second switching center. How does someone in Boulder talk to a 
friend in Fort Collins? One easy way is to simply connect the switching centers, as 
shown in Figure 2.3. If we put several wires between the Fort Collins and Boulder 
switching centers, then several people in Fort Collins can talk to people in Boulder at 
the same time. 

1 1 

2 23 3 

4 4 

5 56 6 

Switching Center Switching Center 

Figure 2.3 
Connections between 

Fort Collins, CO switching centers Boulder, CO 
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Consider now a number of other nearby cities, say Longmont and Denver. The 
folks in these towns want to talk to their friends in Boulder and Fort Collins. We could 
connect all the switching centers together, as shown in Figure 2.4. Alternatively, we 
could have a “super” switching center, which would be a switching center for the 
switching centers, as shown in Figure 2.5. 
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Switching 
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Switching 
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6Denver 

Boulder Fort Collins 

Figure 2.4 Connecting all the switching centers together 
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Figure 2.5 Connecting switching centers using a “super” switching center 
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2.1.3  Multiplexing—An Alternative to a Lot of Wire 

Let’s go back to the Fort Collins and Boulder people in Figure 2.3. Let’s say we’ve 
connected their switching centers so they can talk to each other. As more people in 
Fort Collins want to talk to more people in Boulder, more and more wires need to be 
added between their switching centers. It could get to the point where there are far too 
many wires running between the switching centers. The skies around Fort Collins 
could grow dark under the cover of all these wires. This probably wouldn’t be true of a 
smaller town like Fort Collins, but it was true of big cities like New York. 

Finally, someone said, “Something must be done!’’ and multiplexing was invented. 
Multiplexing refers to any scheme that allows many people’s calls to share a single 
wire. (We’ll talk more about this in Chapter 11, but a brief introduction now is useful.) 

First There Was FDM 

FDM, short for frequency division multiplexing, was the first scheme created to allow 
people’s calls to share a wire. Let’s say Carl, Gretchen, and Monica all want to make a 
call from Fort Collins to Boulder. We only want to use one wire to connect calls be­
tween the two towns. This is shown in Figure 2.6. Carl’s speech, turned into a current 
on a wire, contains the frequencies 100 to 4000 Hz. His speech is left as is. Gretchen’s 
speech, turned into an electrical signal on a wire, also contains the frequencies 100 to 
4000 Hz. A simple device called a mixer (operating at 8000 Hz) is applied to her speech 
signal. This device moves the frequency content of her speech signal, and the frequen­
cies found at 100 Hz to 4,000 Hz are moved to the frequencies 8,100 Hz to 12,000 Hz, 
as shown in Figure 2.7. 

Switching 
Center Carl, Gretchen 

and Monica's voices 

Switching 
Center 

Fort Collins all on one wire Boulder 

Figure 2.6 
People’s speech on one wire 
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Because Carl and Gretchen’s calls are now made up of different frequency com­
ponents, they can be sent on a single wire without interfering with one another. This 
too is shown in Figure 2.7. We now want to add Monica’s speech signal, since she too 
is making a call from Fort Collins to Boulder. A mixer, this one operating at 16,000 Hz, 
is applied to her speech signal. This moves the frequency content of Monica’s speech 
to 16,100 Hz to 20,000 Hz, as shown in Figure 2.7. Because Monica’s speech signal is 
now at different frequencies than Carl and Gretchen’s speech signals, her signal can 
be added onto the same wire as Carl and Gretchen’s, without interfering. (Again, take 
a peek at Figure 2.7.) 

Over in Boulder, we’ve got a wire with Carl, Gretchen, and Monica’s speech on it, 
and we need to separate this into three signals. First, to get Carl’s signal, we use a 
device called a low-pass filter (LPF). The filter we use only allows the frequencies in 0 
to 4000 Hz to pass through; all other frequency components are removed. So, in our 
example, this filter passes Carl’s speech, but stops Gretchen’s and Monica’s speech 
cold. This is shown in Figure 2.8. 

Carl's speech signal 
100-4000 Hz 

100-4000 Hz 

100-4000 Hz 

8000 Hz 

16,000 Hz 

+ +Gretchen's speech signal 

Monica's speech signal 

one wire 

Mixer 

Mixer 

Figure 2.7 
Putting three signals on one wire using FDM 
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Next, we want to recover Gretchen’s speech signal. This is a two-part job. First, a 
bandpass filter (BPF) is applied, with start frequency 8,000 Hz and stop frequency 
12,000 Hz. This filter allows only the frequencies between 8,000 Hz and 12,000 Hz to 
pass through, cutting out ever y other frequency. In the case at hand, this means that 
only Gretchen’s speech signal gets through the filter. This is shown in Figure 2.8. We 
still have one task left. Gretchen’s speech signal has been moved from 100–4,000 Hz to 
8,100–12,000 Hz. We want to bring it back to the original 100–4000 Hz. This is done by 
applying a mixer (operating at 8,000 Hz), which returns Gretchen’s voice signal to its 
original frequency components. 

Monica’s signal is recovered on a single wire in much the same way as 
Gretchen’s, and, rather than use many words, I’ll simply refer you to Figure 2.8. 

Figure 2.8 Getting three speech 
signals back from one wire in FDM 

LPF 
0-4000 Hz 

BPF 
8000-12000 Hz 

BPF 
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Carl, Gretchen
 and Monica's speech

 on one wire Mixer 

Mixer 
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Along Came TDM 

TDM, short for time-division multiplexing, is the second commonly used technique to 
let several people’s speech share a single wire. TDM works like this. Let’s say we’ve 
again got Carl, Gretchen, and Monica, who all want to make their calls from Fort 
Collins to Boulder. Carl, Gretchen, and Monica’s speech sounds are first turned into an 
electrical signal on a wire by their phones, as explained in Chapter 1. Then, their 
electrical speech signals are turned into digital signals, again as explained in Chapter 
1. The digitized, electricized versions of the speech signal are the incoming signals 
that will share a wire. Figure 2.9 shows these incoming signals. 

These signals, coming along the wire, then meet “the big switch,” as shown in 
Figure 2.9. The big switch makes contact with each of the three incoming signals, 
touching each signal for T/3 seconds in ever y T-second interval. The output of this 
switch, again shown in Figure 2.9, consists of one piece of Carl’s speech, then one 
piece of Gretchen’s speech, then one piece of Monica’s speech in ever y T-second 
inter val. In this way, a part of ever ybody’s speech sample gets onto one wire. These 
speech samples are now sharing time on the wire, and hence the name time-division 
multiplexing. 
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Carl's digital speech 
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... digital speechGretchen's digital speech 
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Figure 2.9 How three signals share one wire in TDM 

2.2 POTS: Plain Old Telephone System 

Enough of the basics. Let me now introduce you to a telecommunication network 
currently in use. In fact, it’s the most frequently used telecommunication network in 
the world. It’s called POTS, short for Plain Old Telephone System. We’ll be consider­
ing the phone connections exclusively in Canada and the United States, but keep in 
mind that similar systems exist worldwide. 

2.2.1  Local Calls 

Let’s say Gretchen, at home in Fort Collins, decides to call 
Carl, who is hard at work at CSU writing this book. Here’s 

how the call gets from Gretchen to Carl. First, 
Gretchen’s phone turns her sounds into an analog 

Class 5 
Switching Center 

(end office)Gretchen at home 

electrical signal, as explained in Section 1.2.2. 
This analog electrical signal is sent along a 
copper wire (called a twisted-pair cable) to the 
switching center called the Class 5 switching 
center, or end office (Figure 2.10). 

Carl at the office Figure 2.10  Connecting a local call: the local loop 
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The switching center knows Gretchen’s call is a local call to Carl’s office (based 
on a 7-digit number she initially dialed), and it sends Gretchen’s speech signal down 
the copper wire that connects to Carl’s office. This signal then enters Carl’s phone, 
which turns the electrical signal back into Gretchen’s speech sounds, and there we 
have it. This part of the phone system is called the local loop. There are about 20,000 
end offices in Canada and the United States. 

2.2.2 Long Distance Calls 

Connecting the Call 

Let’s say that Carl’s mom, Mona, who lives in the cold of Montreal, Canada, wants to 
call Carl in Colorado and see if he’s eating well (yes, Mom, I’m eating well). How 
would the telephone system connect this call? We’ll use Figure 2.11 as our guide. First, 
Mona’s Are you eating well? sounds are turned into an analog electrical signal by her 
telephone. This electrical signal is sent along copper wire to the end office (or class 5 
switching center). The end office, realizing that this isn’t a local call, does two things: 
(1) it mixes Mona’s signal with other people’s voice signals (that are also not local 
calls), using multiplexing; then, (2) it takes the mix of Mona’s speech signal and the 
other people’s speech signals and sends this mix to a bigger switching center, called a 
Class 4 switching center, or toll center, shown in Figure 2.11. The toll center is con­
nected to three sets of things. 
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First, it’s connected to a number of end offices (A, B, C, and D in Figure 2.11), 
each end office like the one that Mona’s call came from. If Mona’s call was intended 
for a phone that was connected to end office C for example, then Mona’s speech would 
be sent to end office C and from there to the intended phone. 

The second thing the Class 4 switching center (toll center) is connected to is 
other Class 4 switching centers (BB in Figure 2.11). If the call is intended for a phone 
connected to end office E, then it would likely be sent to toll center BB, then to end 
office E, and then to the intended telephone. 

The third thing a Class 4 switching center is connected to is an even bigger 
switching center, which is called (no big surprise) a Class 3 switching center (also 
called a primary center). If Mona’s call is going to a phone not connected to any of the 
end offices available from toll centers AA or BB, then Mona’s speech moves along to 
the class 3 switching center. 

The good news is that the Class 3 switching center works in pretty much the 
same way as the Class 4 switching center. Basically, from the Class 3 switching center, 
Mona’s call can go to: (1) any Class 3, 4, or 5 switching center that is connected to the 
Class 3 switching center holding Mona’s speech—it will go that route if the intended 
phone is connected to one of these Class 3, 4, or 5 switching centers; other wise, (2) 
the call will be switched to an even bigger switching center, called the Class 2 switching 
center (and also called the sectional center). 

Let’s say Mona’s call heads out to the Class 2 switching center. From here it gets 
to Carl in one of two ways: (1) if Carl’s phone is connected to a Class 2, 3, 4, or 5 
switching center that is directly connected to the Class 2 switching center containing 
Mona’s voice, then Mona’s voice gets sent to that switching center; other wise, (2) 
Mona’s call will go to the last, biggest switching center, the Class 1 switching center (or 
regional center). The Class 1 switching center will then send the call to either a Class 
1, 2, 3, 4, or 5 switching center that it’s connected to, depending on which center is 
most directly connected to Carl’s phone. 

And that, my friends, is how Mona’s concern about Carl’s eating habits gets from 
Mona in Montreal to Carl in Colorado. It’s a 5-level hierarchy of switching centers. 
There are some 13,000 toll centers, 265 primar y centers, 75 sectional centers, and 12 
regional centers. 

2.2.3 The Signals Sent from Switching Center to Switching Center 

We now understand that POTS is made up of five stages of switching centers. We 
understand how a person’s speech gets from one place to another using the phone 
system. Before we move on, I want to discuss what signals are sent from one switch­
ing center to another. 
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A telephone call starts out with the phone in your hand. That call goes to a Class 
5 switching center. If the call is local, it goes from that Class 5 switching center right to 
the person you’re talking to. If the call is not local, the Class 5 switching center puts 
the call together with other long-distance calls, and sends them together to a Class 4 
switching center. Let’s look at the signal created at a Class 5 switching center that is 
sent to a Class 4 switching center. 

Class 5 to Class 4 

The Class 5 switching center gets the call you place. It also gets a lot of other calls 
from your neighborhood. When the Class 5 switching center realizes there are a 
bunch of calls that are not in its area (and instead are long-distance calls), it puts these 
signals together and sends them out. Specifically, it puts the signals together as shown 
in Figure 2.12: 

Class 5 Switching Center 
A A 

Your call

#1
 t T=1/8000=0.125ms 

8000 samples/sec The 
Big 
Switch 

#2 

Symbol Add 
to 1 * 

Quantizer bit bit To class 4 
mapper 

#3 

Forces each amplitude 
to the nearest one 
out of 256 permitted 

output amplitudes . .

. .

. .


#24 

* A 

Piece from 
line #1 

t 

. . . 

line #2 

line #24 

Piece from 

Piece from 

T/24 T = 0.125ms 

Figure 2.12  The signal created at a Class 5 switching center (headed to Class 4) 
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1. First, at the line marked #1, is your call. But that is only one thing coming into
the Class 5 switching center. The center takes your call and at the same time 
takes 23 others, for a total of 24 calls. Those calls incoming to the Class 5 switch­
ing center are the lines marked #1 to #24. 

2. The switching center puts these 24 calls on a single line using TDM. That idea
is explained in Section 2.1.3, but here are some more details explaining exactly 
what the Class 5 switching center does. 

2a. Each voice call is sampled. Specifically, samples of each voice call are 
taken at a rate of 8000 samples/second (i.e., at 8000 Hz). That means that 
each sample taken from a voice call lasts a total time of T = 1/8000 = 0.125 ms. 

2b. Each sampled voice signal meets “the big switch.” The big switch makes 
contact with each digital voice signal briefly once ever y 0.125 ms. As a result, 
the signal that ends up on the wire following “the big switch” is a collection of 
all 24 voice signals. This is shown in Figure 2.12 better than my words can 
explain. 

2c. On the wire following the big switch, we have all 24 voice samples 
smooshed together in the time T = 0.125 ms. The number of samples in each 
second is now 24 × 8,000 samples/second = 192,000 samples/second. 

3. The 192,000 samples/second on our wire now enter through a device called a 
quantizer. The quantizer simply changes the amplitude of the incoming samples. 
Each incoming sample, which has some amplitude A, is mapped to an outgoing 
sample whose amplitude is one of 256 possible values. 

4. Each sample, with an amplitude that is now one of 256 levels, can be fully
represented by a set of 8 bits. (This is because with 8 bits we can represent all 
integers between 1 and 256.) A device called a symbol-to-bit mapper takes each 
sample with one of 256 possible amplitudes, and represents it with 8 bits. While 
before we had 24 samples in each 0.125 ms, we now have 24 × 8 = 192 bits in each 
0.125 ms. 

5. To tell people where each set of 192 bits begins and ends, an extra bit (a 0) is 
squeezed in so that we now have 193 bits in each 0.125 ms. That means we have a 
bit rate of 193 bits/0.125 ms = 1.544 Mb/s. 

These bits, with a bit rate of 1.544 Mb/s, are sent from the Class 5 switching 
center to the Class 4 switching center. The signal sent between the Class 5 and Class 4 
switching centers is named DS-1. The wire which connects the Class 5 to the Class 4 
switching center is called a trunk line, specifically a T-1 trunk line. 
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Other Signals between Switching Centers 

Figure 2.13 shows the different signals sent between different switching centers. 
Coming into a Class 4 center is a DS-1 signal. It is likely that this incoming signal will 
need to be sent to the Class 3 center. If that’s the case, the Class 4 center creates a 
ver y special signal for transmission up to Class 3. Specifically, it takes four DS-1 
signals that are coming into it (from Class 5 centers) and puts these signals together 
onto a single wire using TDM. It adds a few extra bits to help the Class 3 center 
identify the beginning of what it gets and the end of it. When it’s all said and done, the 
signal that moves from Class 4 to Class 3 is a stream of bits with a bit rate of 6.312 
Mb/s. That signal is called a DS-2 signal. 

A signal enters into a Class 3 switching center. This signal might need to move up 
to a Class 2 switching center. In that case, the Class 3 switching center puts together a 
special signal just for Class 2. It takes seven DS-2 signals that are coming into it (from 
Class 4 centers), and puts them together on a single wire using TDM. It adds a few 
extra bits to help the Class 2 office identify places where bit streams begin and end. 
Ultimately, it sends a signal to Class 2 that is a stream of bits with a bit rate of 44.736 
Mb/s. This signal is called a DS-3 signal. 

Finally, it is possible in POTS that a signal arriving at a Class 2 switching center 
might be sent up to a Class 1 switching center. If that’s the case, Class 2 puts together a 
special signal for Class 1. Specifically, a Class 2 center takes five of the DS-3 signals that 
come into it (from Class 3 centers), and packages them together on a single wire using 
TDM. Including a few extra bits to make the package look nice for Class 1, the stream of 
bits sent to Class 1 has a bit rate of 274.1746 Mb/s. This signal is called DS-4. 

What I’ve said so far is true, but not the complete truth. In general, it is possible 
in POTS that DS-1, DS-2, DS-3, and DS-4 signals could be found between any two 
switching centers. For example, I presented DS-3 as the signal Class 3 sends to Class 
2 switching centers. It is also possible in POTS that Class 3 sends a DS-2 signal to 
Class 2. 

2.3 Communication Channels 

So far in our discussion, communication signals have been sent on wires. However, 
there are a number of different ways in which a communication signal can be sent 
from one point to another. Using a wire is just one way—POTS likes and embraces this 
way. In this section, I’ll outline the different ways you can send a signal from one point 
to another—that is, I’ll outline different communication channels. 

2.3.1  Transmission Lines (Wires) 

There are two types of transmission lines (wires) over which communication signals 
are commonly sent. These are twisted-pair cable and coaxial cable. 
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(a) Creation of DS-2 signal, (b) Creation of DS-3 signal, (c) Creation of DS-4 signal
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In twisted-pair cable, a signal is sent from one point to another as a current along 
a wire. Signals that are sent in the frequency range of 0 to 1 MHz can be supported. 
The most common use for twisted-pair cables is in POTS. It forms most of the local 
loop connections. Specifically, in POTS, an insulated twisted-pair cable leaves from a 
home and is combined with many other twisted-pair cables from neighboring homes. 
You end up with one, big fat set of twisted-pair cables sent to the end office (Class 5). 

Coaxial cables are the second type of “wire” used to send communication signals. 
In coaxial cables, the communication information is sent as a current along a wire. 
Coaxial cables can support signals in the 100 kHz to 400 MHz range (a much larger 
range of frequencies than the twisted-pair cable can support). Perhaps the most 
common use of coaxial cable is in connections from TV cable providers to your home. 
Other uses include long-distance lines in POTS and local area networks (LANs), 
discussed a little later in this chapter. 

2.3.2 Terrestrial Microwave 

Another way in which information can be sent from one point to another is by use of 
(1) a modulator, which turns the incoming information signal into a high-frequency 
electrical signal on a wire; and (2) an antenna, which turns the high-frequency signal 
into an electromagnetic wave sent through the atmosphere. At the receiver side, you 
use (1) a receiver antenna, which picks up the incoming electromagnetic wave and 
turns it back into the high-frequency electrical signal, and (2) a demodulator, which 
returns the high-frequency electrical signal back to the original information signals. 
Some examples of communication systems which send information in this way are 
radio stations, wireless communication systems (later in this chapter), and terrestrial 
microwave, which I’ll explain right now so you can get a better understanding of this 
idea. 

A terrestrial microwave transmitter is shown in Figure 2.14. I’ll explain its work­
ings here in three points. 

1. In Figure 2.14 you see the incoming information signal. In this example, the 
incoming information signal contains voice signals; specifically, it contains two 
DS-3 signals combined on a single wire using TDM methods. 

2. The incoming information signal enters a modulator, and the modulator maps 
the incoming signal into a high-frequency electrical signal. For example, the 
modulator may map the incoming signal so that it is now centered around 3 GHz, 
11 GHz, or 23 GHz. 

3. The antenna takes the incoming electrical signal and maps it into an electro­
magnetic wave of frequency 3 GHz, 11 GHz, or 23 GHz (for example). These 
frequencies correspond to microwave frequencies on the EM (electromagnetic) 
spectrum, so the system is called a microwave system. 
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Between the transmitter and receiver we place some devices called repeaters, 
shown in Figure 2.15. Repeaters are placed ever y 26 miles (40 kilometers). The re­
peater may do one of two things: (1) it may simply amplify and retransmit the signal at 
a higher power (non-regenerative repeater); or (2) it may receive the incoming signal, 
remove noise as best it can through a demodulation/remodulation process, and then 
retransmit the signal at a high power (regenerative repeater). We use repeaters for two 
reasons. First, because of the curvature of the earth, the transmit antenna will be hidden 
from the receiver if we do not place a repeater between the transmitter and receiver 
(Figure 2.15). Second, repeaters can be useful in reducing the impact of channel noise. 
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Finally, after travelling through the repeaters, the signal arrives at the receiver, 
shown in Figure 2.16. First, a receiver antenna is applied to return the signal to an 
electrical signal of a frequency of 3 GHz. Then, a demodulator is applied that returns 
the high-frequency signal to the original information signal. 

The terrestrial microwave system just 
described typically operates in frequency Receiver 

ranges of 1 GHz to 50 GHz, and it has electrical signal

Demodulator

antenna High frequency 

been applied in a number of different 
communication systems. For 
example, it has been used as a 
part of POTS, to connect two EM wave 

Information-bearing Class 2 switching centers 
separated by terrain such as signal 

swamp where it is ver y difficult Figure 2.16  Terrestrial microwave receiver 
to lay wire. This terrestrial 
microwave system has also been set up to connect large branches of big companies. It 
has also been implemented as a backup to fiber-optic links (later in this chapter). 

2.3.3 Satellite Connections 

With satellite connections, a communication system is set up as shown in Figure 2.17. 
Here, a transmitter takes the incoming information signal, uses a modulator to turn it 
into a high-frequency signal, and then uses an antenna to turn the signal into an elec­
tromagnetic wave sent through the atmosphere (just as in terrestrial microwave). 

Figure 2.17
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This signal is then sent up to a satellite in orbit around the earth. Specifically, the 
satellite is placed at 36,000 km (22,300 miles), and at that altitude it orbits the Earth at 
6,870 mph. Moving at this speed, the satellite appears to be stationar y when looked at 
from the equator, and so it is said to be in a geo-stationary orbit. The satellite picks up 
the signal and does two things: 

(1) it acts as a repeater; and 

(2) it shifts the frequency (for example, from 6 GHz to 4 GHz) and sends it back 
down to earth in the direction of the receiver. Modern satellites are being built 
which can do more signal processing at the satellite itself, but we won’t go into 
those details here. 

The signal leaves the satellite and heads back to the receiver on Earth. At that 
receiver, an antenna is applied that turns the incoming electromagnetic wave back to 
an electrical signal, and that electrical signal is returned to the original information 
signal by a device called a demodulator. 

Satellite communications operate in a number of frequency bands. Here are some 
of them: (1) C-band, which refers to 6-GHz uplink (“up” to the satellite) and 4-GHz 
downlink (“down” to the receiver); (2) Ku-band, which is 14-GHz uplink/12-GHz 
downlink; and (3) ACTS which refers to 30-GHz uplink/20-GHz downlink. 

Some of the many uses of satellite communications include satellite TV distribu­
tion, live TV transoceanic links, telephone communications over the oceans, backup to 
fiber-optic links, and GPS (Global Positioning System). GPS refers to a system of 
satellites which enables anyone, using a hand-held device, to determine their exact 
position on our planet (ver y useful for ships, backpackers, and companies with large 
fleets of trucks/cars/aircraft). 

2.3.4 Fiber-optic Links 

Fiber-optic cable is a revolution in connecting transmitters to receivers. It seems 
possible to support incredible—and I do mean incredible—rates of information along 
this cable. Using fiber-optic cable, it appears that we can support 1014 bits/s, at the 
ver y least. Right now, we don’t know how to send information at this high a rate 
(although we’re moving in that direction)—we also don’t have that much information 
to send yet! 

In a fiber-optic cable system, you have an information signal, which is an incom­
ing electrical signal. To use a fiber-optic cable, you have to turn this electrical signal 
into light. Figure 2.18 shows how you might do this at the transmitter side, using a 
device called an emitter. The emitter might be, for example, a LED (light-emitting 
diode) or an FP (Farby Parot) laser diode. 
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Figure 2.18  Fiber-optic link 

The fiber-optic cable, which you can also see in Figure 2.18, is made up of two 
parts: a core and a cladding. The light travels down the core. It remains in the core 
and never leaves it (never entering the cladding). This is because the two materials 
chosen for core and cladding are carefully selected to ensure that total internal refrac­
tion occurs—that means that as light enters the boundar y between core and cladding, 
it is bent in such a way that it remains in the core. (For more on this, check out a 
physics book.) 

At the receiver side, the light signal, which has made it through the fiber-optic 
cable, must be returned to an electrical signal. That job is done using a detector, as 
seen in Figure 2.17. The detector might be, for example, a PIN diode or an APD 
(avalanche photo diode). 

The light sent down the fiber-optic cable corresponds to an electromagnetic wave 
with a frequency in the range of 1014 to 1015 Hz. As mentioned already, the system 
appears capable of sending information at rates of 1014 bits/s. 

Because of the incredible promise of fiber-optic cable, these cables are being 
placed everywhere. They have even been placed on the ocean floor between North 
America and Europe, competing with and in many cases replacing satellite links. Fiber-
optic links are being used to connect switching centers in POTS. They are limiting the 
use of coaxial cable and twisted-pair cable to areas where they have already been put 
in place. 
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2.4 Data Communication Networks 

We’ve seen POTS, and we’ve studied the different mediums through which a communi­
cation system can send its information. Let’s take some time here to explore some of the 
different ways and networks (other than POTS) which are in place to help people com­
municate with one another. We’ll start with a discussion of data communication. So far, in 
all the examples we’ve considered, we’ve discussed voice communication between 
different locations. But now we’ll talk about the transmission of data, which here we’ll 
define to be computer communication (that is, communication between computers). 

One of the most common ways in which people’s computers communicate is 
through the use of a modem and POTS (plain old telephone system), shown in Figure 
2.19. Here we see a computer ready to send data on the far left. The data it wants to 
communicate is sent to a device called a modem, which is short for modulator/ 
demodular. The modem next to the computer on the left (sending computer) acts like 
a modulator, which means that it turns the digital signal (data) into a waveform ready 
for transmission over the telephone—specifically, it turns the data into a waveform that 
looks like a speech signal as far as the telephone is concerned (but it sure doesn’t 
sound like one). Then, the modem is connected to the twisted-pair cable that leaves 
the house. The data signal enters into the five-layer telephone system POTS, and 
travels through this system of wires and switching centers until it arrives at the 
receiver’s home. There, the signal travels into the home along a twisted-pair cable and 
enters into the modem. The modem in this case acts as a demodulator, and it turns the 
signal that looks like a speech signal (but doesn’t sound like one) back into the original 
data signal. That enters into the receiver, and in this way, the two computers can talk. 

acts like acts like 
the telephone network 

(a digital signal) 
A signal which looks 

Modem Modem Through POTS, 

Data to be sent 
like a voice signal Data sent 

a modulator a demodulator 
Computer source Computer sink 

Figure 2.19  Data communication via a modem and POTS 

Currently, because of the internet and the fact that people want data at higher and 
higher rates (higher rates than you can get using a modem), some alternatives to the 
modem are now being used. One involves using the coaxial cable that sends TV signals 
into your house to also send data to and from your computer. A second alternative is to 
use DSL (digital subscriber line). In this case, the data signal that your computer wants 
to send is combined with any telephone voice signals that are leaving the house (using 
FDM) and together these are sent out the telephone line to the Class 5 switching center. 
I won’t get into the details of either system here. 
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Beyond these ways of communicating data, which basically are all about updating 
existing voice/TV links so that they also carr y computer data, there is another (a 
better) way. That way is based on using what is called a packet switched network. 

A packet switched network is a communication network designed specifically for 
the communication of data. The underlying idea behind the network is this. Data is 
ver y “bursty,” which means that data sent between computers is usually filled with 
times when lots of data is sent, followed by times when no data is sent, followed by 
times when lots of data is sent, and so on. As a result, people wanted to build a commu­
nication network that allowed for the connection between two computers to be turned 
“on” quickly when data was to be sent, and to be turned “off” when there was no data 
to be sent (so that the communication link could be used for other computer connec­
tions). Here is what engineers came up with. 

Figure 2.20 represents a packed switched communication network. Let’s say the 
computer marked “A” wants to send data to the computer marked “B.” What happens 
is this. 

1. The data from A is broken down into small, equally sized packets of data. Each 
packet has on it the name of the computer it wants to go to (in our case computer B). 

2. The first packet from computer A is sent out to the nearest node. The node, 
which represents a special processor, basically acts like a traffic policeman. It 
looks at the data and does two things. 

2a. It checks to see if the packet has errors in it that occurred in transmis­
sion. If it sees too many errors, it is sent back; if has only a ver y few errors it 
is sent on. 

Figure 2.20 
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2b. If the packet is to be sent on, the node decides which is the best node to 
send it to, based on its final destination. 

3. This movement from node to node continues until the data packet arrives at 
computer B. Each packet from computer A to computer B may follow a different 
path of nodes. 

And this, my readers, is how you build networks intended only for the transmis­
sion of data. 

2.5 Mobile Communications 

One of the fastest growing markets in the world (and the one I am actively research­
ing) is the field of wireless communications, also called mobile communications. 
People on the move (in their car, on their yacht, walking through busy downtown 
streets) believe that they must be able to reach other people through voice (and 
possibly data) communications. These people want anytime/anywhere/with-anyone 
communications, and they are willing to spend their hard-earned dollars to have it. As 
a result, many engineers work hard to give this to them. 

Taking a look at Figure 2.21, we see the idea underlying a mobile communication 
system. We have a person in his car with a mobile phone, which is made up of three 
parts. When he talks into it: 

1. the phone turns the voice signal into a digital signal using a device called a 
codec (coder/decoder); 
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Figure 2.21 Mobile communication system fundamentals 
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2. the phone takes the digital signal it just created and turns it into a high-fre-
quency signal (for example, centered at about 825 MHz) using a device called a 
modem (modulator/demodulator); 

3. the high-frequency signal feeds an antenna, and that antenna turns the high-
frequency electrical signal into an electromagnetic wave (of frequency 825 MHz). 

The electromagnetic wave then travels through the air and is picked up by an 
antenna on a tower called a base station. The antenna on the base station turns the 
signal into an electric signal. The base station, with help from a switching center called 
the MTSO (Mobile Telephone Switching Office), figures out where the call is going, 
and then resends the signal down to the receiving mobile phone at a different fre­
quency (for example, at about 875 MHz). 

The receiving mobile phone has an antenna on it, and this antenna picks up the 
electromagnetic signal intended for the phone, and turns it into an electrical signal 
(with frequency 875 MHz). This high-frequency electrical signal is turned into a low-
frequency digital signal by the modem. Finally, the digital signal is returned to the 
original speech signal by the codec. This signal travels from phone to person’s ear— 
and there you have it, a mobile communication system. 

When engineers first built such a system, 
they had a problem. The government only 
gave them a small band of frequencies to 
use for their wireless communication 
systems (for example, 824 MHz–849 
MHz and 869 MHz–894 MHz). The 
problem with that was that many people 
wanted to use the wireless communica­
tion systems but with the limited 
frequencies, the systems could only 
support a few users. Then, an engi­
neer had an idea he called the cellular 
concept, and wireless telecommunica­
tions was changed forever. The 
cellular concept idea is shown in 
Figure 2.22. 

1. You can see that the entire area

is divided up into small, funny-

shaped regions. Each region is

called a cell (as in cells in the body).

Each cell is typically between 1 mile to

12 miles long.


Cell A 

Cell B 

Figure 2.22 Cellular concept 
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2. Each cell has its own base station. Mobile phones in a cell communicate 
through the base station in its cell. 

3. The transmit power of a mobile phone in a cell is kept low. Any transmissions 
in the cell A that travel in the direction of cell B are effectively zero by the time 
they get to cell B. 

4. Cell A and B use the exact same frequencies. They can do this because they 
are separated in space by a distance that makes cell A’s transmissions unnotice­
able in cell B (and vice-versa). 

In this way, phone companies were able to support a large number of wireless 
users. When I teach this in my class, there are two common questions. I’ll ask these 
questions here and then provide the answers. 

Q: What happens if you are in cell A and want to call someone in cell B? 

A: If you are making a call while in cell A, and the user you want to talk to is in 
cell B, then your call goes to the base station in cell A. It is sent from there to the 
MTSO (Mobile Telephone Switching Center); from there the call is sent to the 
base station in cell B, which sends it down to the intended listener in cell B. 

Q: What happens if, when driving in your car, you head out of one cell and into 
another? 

A: If you move out of one cell and into another, then the wireless communication 
system switches your call from communication with the base station in the old 
cell to communication with the base station in the new cell. 

2.6 Local Area Networks (LANs) 

The final section of this chapter describes a type of communication system known as a 
local area network, or LAN for short. As the name suggests, this is a network intended 
to allow a number of different users (usually computers) located close to one another 
to communicate together. It might be used in an office building, or in a university 
setting, to allow people’s computers to talk to one another. Typically, LANs provide 
ver y high-bit-rate communications, enabling multiple users to communicate lots of 
information ver y quickly. 

Two types of LANs have become popular. The first is called Ethernet, and the 
second is known as Token ring. 

Ethernet is shown in Figure 2.23. Here, you see three computers connected 
together by a single coaxial cable. These users can communicate at 10 Mb/s (tradi­
tional speed) or 100 Mb/s (high speed). Let’s say that computer A wants to talk with 
computer B. Here’s what happens: 
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Figure 2.23 LAN using Ethernet 

1. Computer A listens to the cable to see if there is a communication transmis­
sion. If there is no transmission, then computer A sends its information on the 
cable. If there is a transmission, then computer A waits until the transmission is 
done, and then it begins to send its signal. 

2. When computer A first sends out its information, it checks to see if another 
computer has sent a transmission at the same time. If not, Computer A continues 
to send its data. If computer A and another computer were tr ying to send data at 
the same time, a “collision” is detected. Computer A stops its transmission, waits 
a random amount of time, and then tries to send it again. 

3. When computer A is able to send information on the line (and no “collision” is 
detected), it sends out the name of the destination computer, Computer B. All the 
computers look at the data, to see if it is for them. 

4. Computer B sees its name and reads the information.


That is, briefly, all there is to Ethernet connections.


The second type of communication system is called a Token ring network. The

Token ring network is shown in Figure 2.24, and it operates as follows: 

1. When there is no computer transmitting, the bits 1 1 1 1 1 1 1 1 are sent around 
the ring connecting the computers. These 8 bits are called the token. 

2. When computer A wants to send information, it listens to the ring to make sure 
the token is on the ring. If it is, it inverts the last bit of the token (putting out 1 1 1 
1 1 1 1 0) and then follows this with its information. Computer A makes sure that 
it puts the name of the intended computer in its information—for example, if the 
data is headed to computer B, computer A makes sure it puts “computer B” in its 
sent data. 
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3. Every computer picks up the data sent by computer A, and reads the name to 
see if it is the intended addressee. If it is not, the computer puts the information 
back on the ring without reading it. If the data is intended for the computer, the 
computer reads the data, and then puts it back on the ring. 

4. Eventually, the data gets back to the computer who sent it. This computer picks 
up its data, and puts the token 1 1 1 1 1 1 1 1 back on the ring. 

And that is how computers communicate using Token ring links. 

2.7 Conclusion 

This chapter introduced you to the world of communication systems. From here on, 
we’ll focus on the details of how these systems work. For example, we will look into a 
cellular phone. We will describe how the codec (coder/decoder) works in Chapter 4. 
We will understand how the modem (modulator/demodulator) works in Chapter 5. We 
will introduce an important part of digital communication systems, called the channel 
coder/decoder, in Chapter 6. Basically, in what follows, we get into what is called the 
“physical layer”—how all the insides work. But first is Chapter 3, a review of the 
statistics and signals and systems details that you’ll want to make sure you know 
before forging ahead. 
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Problems 

1. Briefly describe the following: 
(a) how to connect 1000 users to one another without directly


connecting every user to every other one.

(b) two ways to put 1000 users on a single wire. 
(c) the cellular concept. 

2. Describe three communication systems that send their signal as an EM wave 
through the atmosphere. 

3. On your own, find on the web or in the library a telecommunication system not 
described in this chapter (e.g., HDTV, the Internet) and provide a two-page 
overview, highlighting how the system works. 



3 
Chapter 

A Review of Some Important 
Math, Stats, and Systems 

My intention in writing this chapter is to give a quick review of key mathematical, 
statistical, and engineering concepts which we’ll use in our study of telecommu­

nications. I basically provide a brief review of random variables and random processes, 
and then talk in passing about the Fourier transform and linear time invariant (LTI) 
systems. 

If this material is new to you, read what follows carefully and use the references to 
fill in any blanks you find; if this stuff is old hat, then give it a passing glance, if for no 
other reason than to familiarize yourself with the notation found throughout the book. 

3.1  Random Variables 

First, I’ll briefly review random variables, limiting my discussion to continuous random 
variables. 

3.1.1 Definitions 

First, as usual, some definitions. A random event, A, refers simply to an event with an 
unknown outcome. An example of a random event is tomorrow’s weather. 

Next, a random variable, x, is a number whose value is determined by a random 
event, A. For example, it may be tomorrow’s outdoor temperature in Fort Collins, 
Colorado (where I live). 

3.1.2  The Distribution Function: One Way to Describe x 

Let’s say you’ve got a random variable, x, which is tomorrow’s temperature. You want 
to somehow be able to describe x = (tomorrow’s temperature) to someone. You don’t 
know exactly what this value will be, but you do know it’s the middle of summer, so 
you know it’s a lot more likely to be 80 degrees (Fahrenheit) than it is to be 0 degrees. 
This section is all about how you can describe a random variable, like tomorrow’s 
temperature, to someone without using a lot of words. 
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One way to fully characterize our random variable x is by a function called the 
( ) . The function F Xprobability distribution function, F X ( )  is defined in words as x x

follows: F X( ) is the likelihood that the random variable x is less than the number X.x
In a nice, neat equation, F X( ) is defined asx

" ( )=   ! < � ) (3.1) 

where P( __ ) is shorthand for the words “probability that __ happens.” 

Let me clarify the meaning of F X( ) by an example. Let’s again go back to xx
being tomorrow’s temperature, and let’s say it’s the middle of summer. Then: 
(1) F (0) = P(x<0) = (the probability that the temperature is less than 0), and this may x
be 1/1000000 (1 in a million), and (2) F (70) = P(x<70) = (the probability that the x
temperature is less than 70), and this may be ½ (1 in 2). By providing F X( ) for allx
possible values of X, you completely characterize your random variable. 

Here are four simple properties of F X( ) :x

( ) <1: that is, since F X(1) 0< F X ( )  represents the probability that x<X, it, likex x
all probabilities, must be between 0 (never happens) and 1 (always happens). 

(2) F (– ∞ )=0: that is, F (– ∞ ) = P(x < – ∞ ) = (the probability that x is less thanx x
−∞ ) = 0 (since no number can be smaller than – ∞ ) . 

(3) F ( ∞ )=1: that is, F ( ∞ ) = P(x < ∞ ) = (the probability that x is less than ∞ )x x
= 1 (since every value must be smaller than ∞ ). 

(4) F (x1) ≥ F (x2) if x >x2: that is, for example, the probability that x is less than 20x x 1
is at least as big as the probability that x is less than 10. 

3.1.3 The Density Function: A Second Way to Describe x 

A second way to describe our random variable x is to use a different function called the 
probability density function (pdf for short). Let’s take a look again at our random vari­
able x, which represents tomorrow’s summer temperature. The pdf for this variable is 
denoted p (x) or p(x), and its meaning will be described first in an equation, then inx
words, then in a graph, and, finally (phew), using some intuition. 

(1) In an equation

( (  ! ≤   ≤   )= ∫   $ )#  (3.2) 
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(2) In words, if you want to know how likely it is that tomorrow’s temperature x 
will be between 70 degrees and 80 degrees, all you have to do is integrate p(x) 
over the range of 70 to 80. 

(3) In a graph, an example of a possible p(x) is shown in Figure 3.1. If you want to 
figure out the probability that tomorrow’s temperature x will be between 70 and 80, 
all you have to do is figure out the area under the p(x) curve between 70 and 80. 

(4) And now, we turn on the intuition. Intuitively speaking, p(x) at x = 70 gives you 
an idea how likely it is that tomorrow’s temperature will be about 70 degrees. 
Values of x at which p(x) is biggest are those values most likely to happen. 

p(x) 

x7570 80 

Figure 3.1  Possible p(x) for x = tomorrow’s temperature 

3.1.4  The Mean and the Variance 

If you tell me F X( ) or p(x), then I know ever ything there is to know about x, butx
what if I don’t want to know ever ything about x, or what if it’s hard for you to tell me 
ever ything about x. In either case, there are some common ways for providing partial 
(but important) information about x. 
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(1) the mean, xm (also known as E(x)): One thing you can tell me is the average 
(or mean) value of x. If x is tomorrow’s temperature, then xm  is the average 
(considering all the years gone by), of tomorrow’s temperature. If you know p(x), 
then you can easily compute x  like this:m

∞ 

xm = ∫ x p x dx  (3.3)( )  
−∞ 

(2) the variance, σ 2 : Another important piece of information about the random n 
variable x is how much x varies. That’s measured by a well-named term, variance. 
If x changes a lot (for example, if tomorrow’s temperature could be anywhere 
between 40 and 120 degrees, and you really can’t be sure where in that range it 
will fall), then the variance is a big number. If x changes ver y little (for example, 
you’re very sure tomorrow’s temperature will be between 73 and 77 degrees), 
then the variance is a small number. If you know p(x), you can compute variance 
using the following integral equation: 

∞ 

σ = ∫ (  −   )   $ )#  (3.4) 
∞ − 

One last thing about variance. You can usually get a feel if it will be big or small 
by looking at a graph of p(x). If this graph is kind of flat and spread out over a lot of x 
values, variance will be big; if this graph is peaky, or not spread out over a lot of x 
values, then variance is small. Figure 3.2 shows you what I mean. 

p(x) p(x) 

xx 

(a) (b)
Figure 3.2 

(a) Random variable x with large variance
(b) Random variable x with small variance
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Example 3.1 

Given a random variable x and told that x has a probability distribution function 
p(x) shown in Figure E3.1, determine its mean and its variance. 

p(x) 

1 

0 2 

2 

Figure E3.1  The p(x) for our example 

We’ll use equation (3.3) to get the mean like this: 

∞ 

 = ∫   $   ' ( )  #  (E3.1) 
∞ −


J K ∞


 ' = ∫   ⋅ J 
L #  + ∫   ⋅ K #  +   ⋅ K #  (E3.2)∫


K ∞ − J


 ' = ∫   ⋅ J 
L #  (E3.3) 

(E3.4) 

  = L (E3.5) 

We’ll use equation (3.4) to get the variance (it’s plug-and-chug!) 

∞ 

σ J = ∫ (  −   )   $ ) #  (E3.6) 
∞ − 
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0 ∞

2 2


2 
1 

2 
2 2σ = ∫ (x −1) ⋅ dx  + ∫ (x −1) ⋅ 0 dx  + ∫ (x −1) ⋅ 0 #  (E3.7)x


0
 −∞ 2 

2

2 2
σ = ∫ (x −1) ⋅ x 

1 
2 dx  (E3.8) 

0 

3 2

2 ⋅ 1


(x −1)
σ =  

3 2 (E3.9)x 0 

−L− = σ  

L ( )  
(E3.10) 

O 
L (E3.11)σ = 

N

3.1.5  Multiple Random Variables 

What do you do if you have more than one random variable? Let’s say you have two 
random variables, x which is tomorrow’s temperature, and y which is the temperature 
on the day after tomorrow. How do you describe these two random variables? That’s 
usually handled using a joint probability density function p(x,y). This is just a simple 
extension of the probability density function p(x). Mathematically, p(x,y) is defined by 
the integral equation 

! (  ≤ ≤ ) *   ≤ ≤ ) )= ∫ ∫ $ ( )  * ) # #) (3.5) 

In words, you can use p(x,y) to tell how likely it is that (x,y) falls within any range 
of possible values. 

But why stop at two random variables? Let’s say you give me 26 random variables 
a,b,c, right to z, representing the temperature for the next 26 days. If you want to 
describe these statistically, you can characterize them with the joint probability density 
function p(a,b,c,...,z). This is defined by the integral equation 

z2 b2 a2 

a 1 bP (a ≤  ≤  a2 , b ≤ ≤ b2 ,…, z ≤ ≤ z2 ) = … p (a b ,…, z )da db …dz1 1 z ∫ ∫ ∫  , 
z1 b1 a1 

(3.6) 

And so, just like the p(x) or p(x,y) before it, you can use p(a,b,c,...,z) to tell you 
how likely it is that your values fall within any range of possible values. 
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3.2 Random Processes 

3.2.1  A Definition 

Random processes are sort of like random variables, only there’s a little more to know. 
We’ll work our way to defining a random process like this: 

(1) First, let’s say we have A, a random event (an event with an unknown out­
come). We’ll make A the random event: “Will it be sunny tomorrow?” 

(2) Now, a random variable x is a 
x(t,A ) 1	 number whose exact value de­

pends on the random event A. For 
example, x may be tomorrow’s 
high temperature, and that will 
depend on whether it’s sunny or

A = A1 not. So we can write x = x(A)— 
that is, x is a function of A. 

(3) Now, we jump to a random 
t	 process. A random process, x(t), 

is a function of time t, where the 
exact function that occurs de­
pends on a random event A. For2 

A = A2 

A = AN 

t 

t 

N 

...
 

x(t,A )

x(t,A )

example, let x(t) be tomorrow’s 
temperature as it changes with 
time over the day; the values of 
x(t) will depend on A (whether 
it’s sunny or not). So, we can 
write x(t) = x(t,A) to indicate that 
the time function depends on the 
random event A. Here, x(t,A) is a 
random process. 

A plot of a random process 
is shown in Figure 3.3. We see 
that there is a time function x(t) = 
x(t,A), and the exact value of the 
time function x(t) = x(t,A) de­
pends on the random event A. If 

Figure 3.3 
Plot of a random 

process x(t,A) 
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the random event A corresponds to its first possible outcome—that is, it is sunny 
tomorrow—then we get the time function x(t,A1) telling us tomorrow’s temperature 
throughout the day. If the random event A corresponds to its second possible outcome, 
A —it is partly cloudy tomorrow—then we get time function x(t,A2) telling us how2 
tomorrow’s temperature changes throughout the day. And so on. 

There’s one ver y important thing to note about a random process x(t,A). Take a 
look at Figure 3.4. There I’ve drawn x(t,A) and I’ve drawn a dotted line through time 
t = t . At time t = t1, we have x(t1,A), which is a number whose exact value depends on A.1

That’s just a random variable! So, the sample of a 
x(t,A ) random process x(t,A) at t = t  is a random1 1

variable. We’ll call it x1 = x1(A). 

A = A1 

A = A2 

t 

t 

t 

2 

N 

1 1 

1 2 

1 N 

t = t1 

t = t1 

t = t1 

...
 

x(t,A )

x(t,A )

x(t , A ) 

x(t , A ) 

x(t , A ) 

Figure 3.4

A random process,


highlighting time t = t
1


A = AN 
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3.2.2 Expressing Yourself, or a Complete Statistical Description 

Now, you say, I understand what a random process is. It’s simply a function of time 
whose exact function depends on a random event A. But how do I characterize it? Let’s 
say I want to tell my mathematician friends all about my random process—how do I do 
that? 

To totally and fully describe your random process, you’ll have to provide this 
information: 

(1) At any time t = t1, you’ll have x(t,A) = x(t1,A) = x1, a random variable. Your 
mathematically inclined friends will need to know all about this random variable 
x1, which means you’ll want to provide p(x1). 

(2) At any two times t = t  and t = t2, you’ll have x(t1,A) = x1 and x(t2,A) = x2, both1
of which are random variables. You will need a complete characterization of these 
two random variables, and as you know, that’s done by providing the joint prob­
ability density function p(x1,x2). 

(3) At any K times, t = t1, t = t2, and so on up to t = tK, you’ll have x(t1,A) = x1, 
x(t2,A) = x2 and so on up to x(tK,A) = xK, all of which are random variables. This 
time, you’ll have to provide a complete characterization of these random vari­
ables, which means you’ll have to provide p(x1,x2,...,xK). 

Actually, all you have to give your friends is what’s in (3), since you can use 
p(x1,x2,...,xK) to get the information in (1) and (2), namely p(x1) and p(x1,x2). However, 
providing the information in (3) is often tough stuff. Generally, it’s difficult to provide 
p(x1,x2,...,xK) for a random process. 

3.2.3 Expressing Some of Yourself, or a Partial Description 

What most people do is provide partial information about a random process—just 
enough information to be able to proceed with a telecommunications study. What they 
provide is called a second-order characterization of the random process. In a second-
order characterization, you provide two things: 

(1) the mean of x(t1,A) = x1: this number (which may be different at different 
times t1) tells you the average value of x(t,A) at t = t1. This value can be generated 
using the equation 

∞ 

m ( ) = ∫ x1 p (x1 )dx  1 (3.7)x t1 
−∞ 
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(2) the autocovariance, Rx(t1,t2): this number (which may be different for different 
t1 and t2 values) describes the relationship between the random variable x(t1,A) = 
x  and the random variable x(t2,A) = x2. The larger this number, the more closely 1
related x(t1,A) is to x(t2,A). This value can be generated mathematically through 
the equation 

∞ ∞ 

, ( + * + )= ∫ ∫ (   −   ( + )) (   −   ( + )) $ (   *   ) #  #  & % & ' & % ' % & % & % (3.8) 
∞ − ∞ − 

3.2.4 And in Telecommunications … 

Now, you know what a random process is, and you know how to fully describe it and 
how to partially describe it. In most communication systems, random processes have a 
rather nice property that makes them simple to deal with. In most telecommunication 
applications, random processes are wide sense stationar y (WSS). This means just two 
things: 

(1) the mean of x(t1,A) = x1: this value is the same as the mean of the random 
variable x(t2,A) = x2, and the same as the mean of the random variable x(t3,A) = x3, 
and so on. Mathematically, that means that the value 

( ) = x t2 ) = x t3 ) = … = x PQRSTUVWXRUYZ[X\ ) (3.9)
mx t1 m ( m ( m 

(2) the autocovariance, Rx(t1,t2): this value depends only on the time difference 
between t1 and t2. That is, mathematically, 

R t , t ) = R  t  1 − t2 ) = Rx (τ) (3.10)x ( x (1 2 

Example 3.2 

Determine the mean and the autocovariance of a random process described by 

( L   
$ ( +   ] . ))= $ (   )= 

Jπ 
- $ 


−   

J

J 


 (E3.12) 

for all times t1, and 

2x1p x t  A  x t  A  )) = p x  x  ) = p x ) ⋅ p x ) = 
2
1 
π 

exp  
 

2

2 
( ( 1, ) , ( 2 , ( 1, 2 ( 1 ( 2 

 − −  x2 
 

(E3.13) 
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Solution: To solve for the mean, we test out equation (3.7): 

∞ 

 ( )= ∫  L   $ ) # ' L ( L L (E3.14) 
∞ − 

- $ 
 −   

 # L (E3.15)= 
∞

∫ 
  

Jπ  J

J 

∞ − 

L 
∞  −  J  

 - $   # L (E3.16)= 
Jπ ∫ & 

 J ∞ − 

∞ 
= 

J

L 

π 
− - $ 

 −  L

 

(E3.17) ∞ −  J  

= K (E3.18) 

To figure out the autocovariance, we plug and play with equation (3.8) like this: 

∞ ∞ 

( ) = JL] ++,  (∫ ∫  L  ) (− JK   − K) ( )JL]    $ JL #  #  (E3.19) 
∞ − ∞ − 

∞ ∞ 

= JL    ⋅∫ ∫  ⋅ ( JL]    $ ) JL #  #  (E3.20) 
∞ − ∞ − 

∞ ∞  

= ∫ ∫  ( )1 2 1x  x  p x  ⋅ ⋅ ⋅ ( )2 1 2p x  dx dx  (E3.21) 
−∞ −∞ 

∞ ∞ 

= ∫ L  ( )  ⋅ LL #   $ ∫ J  ( ) JJ #   $ = '  ⋅ '  = K (E3.22) 
∞ − ∞ − 
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3.3 Signals and Systems: A Quick Peek 

3.3.1 A Few Signals 

As a way to begin our brief review of signals and systems, I’ll describe two signals that 
we’ll use throughout the upcoming chapters. 

First, there’s δ (t), which is called the impulse function (or delta function, or just 
impulse). This function is very tall and ver y skinny, and centered around 0. To be a bit 
more specific regarding what it looks like, take a look at Figure 3.5. There, you’ll see a 
function of height 1/T and of duration T. As T goes to 0, this function becomes ver y, 
ver y skinny and ver y, ver y tall. When T goes to 0, the plot in Figure 3.5 corresponds to 
δ (t). So, looking closely at Figure 3.5 as T goes to 0, we can say three things about δ (t): 

(1) δ (t) is infinitely tall; 

(2) δ (t) is infinitely skinny; and 

(3) the area under the δ (t) function is 1; that is, mathematically, 

∞ 

∫δ ( )  #+ = L 
−∞ 

1/ T 

T 

δ →(t) = this plot as T  0 

t 

Figure 3.5 Describing δδδδδ(t) 

The most common way to represent δ (t) using the plot is shown in Figure 3.6. 

The next function that we’ll use frequently is a square wave function, which I’ll 
call π ( )t . This function is of height 1 and duration T. Mathematically, you can write 
π ( ) using the simple equationt
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π ( )=

 

]L K ≤ + ≤ ^ 
+ (3.11)

]K XWSX 

You can also see what π ( )t  looks like graphically in Figure 3.7. 

δ (t) 

Figure 3.6
1 The most common way to 

represent δδδδδ(t) graphically 

t 

t 

π (t) 

1 

T 

Figure 3.7 
The signal πππππ(t) 

3.3.2 Another Way to Represent a Signal: The Fourier Transform 

There are lots of ways to represent a signal s(t). One easy way is to write a mathemati­
cal equation such as 

s t  ( c t( ) = cos 2π f t ) ⋅ π ( )  (3.12) 
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s(t) = cos (2 f t) • π (t)π c 

Figure 3.8 Plot of s(t) 

t 

Another way is to draw a picture, which shows you what s(t) looks like and how it 
changes with time. For example, for the s(t) of equation (3.12), you can see its plot in 
Figure 3.8. 

But there’s another way to describe signals, discovered by a fellow named Fou­
rier. He realized that any time signal s(t) can be created by adding together cosine and 
sine waveforms with different frequencies. You can describe s(t) by indicating how 
much of each frequency f you need to put together to make your signal s(t). To figure 
this out, all you have to do is the simple integral 

(
∞


− 2% π0+
1 ( )= " {  }= ∫ + / ) - #+ (3.13)0 + / ) (
∞ − 

This is called the Fourier transform of s(t). For the s(t) of equation (3.12), the 
S(f) is computed to be 

− c ) − c ) + c ) + c )1 sin (π( f  f T  ) − j2π( f  f T  2 + 1 sin (π( f  f T  ) − j2π( f  f T  2S f( ) = 
2T π( f  f T  2T π( f  f T  

e 
− c ) e 

+ c ) 
(3.14) 

While this looks messy, you can see a plot of part of S(f) (the |S(f)|) in Figure 3.9. 
So, now you can plot your signal in time, showing how it changes in time, or you can 
plot your signal in frequency, showing how much of each frequency you need to make 
up your time signal s(t). Your choice. 

Example 3.3 

Determine the Fourier transform of the signal s(t)=δ(t).


We’ll turn to equation (3.13) for help, where we find:


∞

− 2 Jπρ+
1 ( )= ∫ - + / #+ (E3.23) 

∞ − 
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∞

− 2 Jπ 0+
( )= ∫δ ( -+ #+ (E3.24)01 ) 

∞− 

-= − 2 Jπ 0 K (E3.25) 

= - 2 K (E3.26) 

= L (E3.27) 

This S(f) is plotted in Figure E3.2. Interestingly, what we see here is that 
the signal s(t)=δ (t) is made up of an equal amount of all the frequencies. 

S(f) 

1 

f 

Figure E3.2 The Fourier transform of δ δδδδ(t) 

f 
– fc fc–1/T fc fc+1/T 

S(f) 

... ... 

Figure 3.9 
Plot of  S(f)     

3.3.3 Bandwidth 

Oftentimes, engineers want to know one thing about a signal s(t), its bandwidth. The 
bandwidth, s(t), is a way to tell someone how many frequency components you need to 
make up your signal s(t). This definition of “bandwidth of a signal” is a rather vague 
definition. Engineers have tried to come up with a more specific definition, but, for 
some reason, they just couldn’t agree on one way to exactly define the words “band­
width of a signal.” They decided, just to please ever yone, they’d use many different 
definitions. Here are some of these: 
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f 

| |S(f) 

...... 

absolute BW is ∞ 
– ∞ +∞ 

(a) 

f 

| |S(f) 

...... 

fc –1/T fc+1/T 

null-to-null 
BW = 2/T 

peak value of S(f) 

(b) 

f 

| |S(f) 

...... 

3dB BW 

peak value = P 
value = P/2 value = P/2 

(c) 

Figure 3.10

For a particular S(f), plot shows (a) absolute bandwidth,


(b) null-to-null bandwidth, and (c) 3-dB bandwidth
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Absolute bandwidth: the range of frequencies over which S(f) (or |S(f)|) is not 
zero (Figure 3.10(a)). For example, for the |S(f)| of Figure 3.9, redrawn in Figure 
3.10(a), this value is infinity. 

Null-to-null bandwidth: the range of frequencies in S(f) (or |S(f)|) as shown in 
Figure 3.10(b). In words, and it’s a mouthful, this bandwidth is the range of frequen­
cies from [the frequency, to the right of the peak value of |S(f)|, at which the first 0 
occurs] to [the frequency, to the left of the peak value of |S(f)|, at which the first 0 
occurs]. So, for example, for the |S(f)| of Figure 3.9 redrawn in Figure 3.10(b), the first 
zero to the right of the peak is at f = fc –1/T, and the first zero to the left of the peak is 
at f = fc + 1/T, so the null-to-null bandwidth is 2/T. 

3-dB bandwidth: the range of frequencies in S(f) (or |S(f)|) as shown in Figure 
3.10(c). In words and, again, it’s a mouthful: the range of frequencies from [the fre­
quency to the right of the peak value of |S(f)| where |S(f)| is half its peak value] to [the 
frequency on the left of the peak where |S(f)| is half its peak value]. 

Now you know how to figure out the bandwidth of a signal. Typically, when I use 
the word bandwidth, often written BW for short, I’ll be referring to the null-to-null 
bandwidth. 

3.3.4 A Linear Time Invariant (LTI) System 

Figure 3.11 shows a system with an input x(t) and an output y(t). You’ll notice the 
system is called LTI, which means 

(1) it’s linear: if I put in ax1(t)+bx2(t), I’ll get out ay1(t)+by2(t). Here, y1(t) is the 
system’s response to x1(t), and y2(t) is the system’s response to x2(t); 

(2) it’s time invariant: if I put in x(t–T), I’ll get out y(t–T)—that is, a delay in the 
input creates a delay in the output. 

There is just one thing I want you to know about an LTI system. Let’s say you 
find out that the system output is y(t) = h(t) when the system input is the impulse 
x(t) = δ(t). Just by knowing this one little thing, h(t), called the impulse response, you 
can get the output y(t) for any input x(t). All you have to do to get the output, given the 
input x(t), is calculate an integral called convolution. It goes like this: 

Linear Time Invariant 

Input (LTI) Output 
x(t) System y(t) 

Figure 3.11  LTI system 
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∞ 

+ ) ( )  ( )= ∫ 3 (τ ) +   − τ τ (3.15)( )= +   4 + 3 ( ) # 
−∞ 

Sometimes calculating this integral can be a pain. In that case, you can instead 
figure out the output y(t), given the input x(t), by using the relationship 

( )= 5 ( ) ( ) (3.16)0 6 0 � 0 

where Y(f), X(f), and H(f) are the Fourier transforms of y(t), x(t), and h(t), 
respectively. 

3.3.5 Some Special Linear Time Invariant (LTI) Systems 

Earlier, I talked about some special signals. Now, I’ll talk about some special systems. 
I’ll use them a lot throughout this book, so it’s rather important you know what these 
systems are. 

First, there’s a linear time invariant system called a low-pass filter, or LPF for 
short. This refers to a system where H(f) is as shown in Figure 3.12. In other words, 
it’s a system where the H(f) is made mostly of frequencies less than fm . Take a look at 
Figure 3.13. Here, you can see the signal x(t) (i.e., X(f)) coming into the system. The 
system has an H(f) that makes it a low-pass filter. What comes out of the system is 

x(t) 

LTI 
System 

h(t) H(f) 
characterized by 

y(t) 

H(f) H(f) 

ff 
fm 

OR 

fm 

Figure 3.12  LTI system corresponding to LPF 
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Y(f) = H(f)X(f), and this is also drawn in Figure 3.13. You can see the output corre­
sponds simply to the low-frequency components of the input. Hence, the name 
low-pass filter (LPF), because only the low frequencies pass through to the output. 

Next, there’s a linear time invariant system called a bandpass filter (BPF for 
short). You can understand the BPF by studying Figure 3.14. It has an H(f) as shown 
in the figure; in words, the H(f) is not 0 only around some frequency f . Now, look at c 
what happens when an input x(t)(X(f)) enters into the BPF. In Figure 3.14, the output 
is made up of just the frequencies around fc. That is, the BPF only allows frequencies 
around some f to get to the output.c

H(f) 

1 1 1 

10 

f f f 
f m 

y(t)x(t) 

X(f) Y(f)H(f) 

LTI System 

Figure 3.13  What happens in an LPF 

H(f) 
y(t)x(t) LTI System 

X(f) H(f) Y(f) 

1 
10 

10 

f f f 
fc 

Figure 3.14  What happens in a BPF 
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h(t) y(t)x(t) h–1(t) x(t) 
LTI System Inverse LTI System 

Figure 3.15  Describing inverse LTI system 

Finally, we’ve got an inverse system. For a given LTI system with impulse response 
h(t) (H(f)), the inverse system is defined as follows: 

(1) in pictures, take a look at Figure 3.15 and you’ll get a feel for what the inverse 
system does; 

(2) in words, if I take a signal x(t), and pass it through the LTI system with 
impulse response h(t), and then pass it through the inverse system, I get back 
my original x(t); 

(3) mathematically, the inverse system is characterized as the system with 
impulse response h–1(t) (H –1(f)) such that: 

( )+3 & − ( )  ( )++ 3 4 δ= (3.17) 

( )− 05 & ( )= L⋅ 05 (3.18) 

3.4 Onward 

We’ve come to the end of our rather brief review. I’ll see you as we move ahead into 
the heart of telecommunications, starting with Chapter 4. 
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Problems 

1. Consider a random variable with probability distribution function 

 (x a)  
p x( ) = 1 exp  − 

2 
−
β 2

2 


 

2πβ 2  
(Q3.1) 

(a) Evaluate the mean. 
(b) Figure out the variance. 

2. Consider a random process where 

! ( )] +   J ) (  ]   )= $ ( )( )⋅ $ ( )( ) (Q3.2)+   L ( L J +   L 
  L +   J 

  J 

' ( ) = K (Q3.3)+   L 

Determine the value of the autocovariance. 

3. Show that 

, ( + + )= σ ( )  (Q3.4)  L L +   L 

4. Determine the Fourier transform of the time signal 

1, − T
2 ≤  ≤  Tt 2x t( ) =  

0, (Q3.5)
 





4 
Chapter 

Source Coding and Decoding:

Making it Digital 

This chapter talks about how to turn an analog signal into a digital one, a process 
called source coding. We took a brief look at it at the end of Chapter 1, when 

Monica’s analog speech signal was turned into a digital signal. We’ll now talk at some 
length about source coding. 

Before going on, just a brief reminder about why we want to turn analog signals to 
digital. So many naturally occurring sources of information are analog (human speech, 
for example), and we want to make them digital signals so we can use a digital commu­
nication system. 

4.1  Sampling 

The key first step in turning any analog signal to a digital one is called sampling. 
Sampling is the changing of an analog signal to samples (or pieces) of itself. 

4.1.1  Ideal Sampling 

There are three methods of sampling that we’ll look at together, the first of which is 
called ideal sampling, or impulse train sampling. As the name suggests, it is a sam­
pling that is impossible to physically carr y out. So, you ask, why are you telling me 
about something that can never be done? Well, have faith—there are two good rea­
sons. First, ideal sampling leads to an understanding of the very important sampling 
theorem. Second, ideal sampling will help you easily grasp and understand the two 
practical sampling methods that follow. 

The Sampling 

Ideal sampling is simple, and it’s shown in Figure 4.1.  Here, an analog input x(t)—say, 
Carl’s speech—enters the sampler.  The sampler does one thing: it multiplies Carl’s 
speech by the signal 
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X 
x(t) xs (t) = x(t) · p(t) 

= 
p(t) = t t0 = 0 Ts 2Ts3Ts4Ts5Ts 

... ... 

1 

–Ts 0 Ts 

Figure 4.1  Ideal sampling 

∞ 

t p ) = ∑δ (t − kT ) (4.1)( s

k −∞ =


called an impulse train, shown in Figure 4.1. The output of the sampler is then 
∞ 

( ( (x (t) = t x ) ⋅ t p ) = t x ) ⋅ ∑δ (t − kT ) (4.2)s s

k −∞ =


The multiplication of x(t) by the impulse train p(t) leads to the output shown on 
the output side of Figure 4.1. Here, we see that the output is made up of impulses at 
times kTs of height x kT ) ; that is, mathematically, ( s 

∞ 

(x (t) = ∑ kT x )δ (t − kT ) (4.3)s s s

k −∞ =


In essence, this is everything there is to know about ideal sampling. Well, almost 
everything. 

The Information in the Samples 

After building the sampler, one telecommunication engineer began to wonder: “How 
much of the information in Carl’s speech signal x(t) is lost when it’s sampled to create 

s ( ) ?”  We’ll spend this section answering his question. The easiest way to answer it 
is to turn to the frequency domain for help. Let’s first take a look at Carl’s incoming 
speech signal, x(t). When described in the frequency domain, as X(f), we’ll assume for 
this section that it looks like Figure 4.2(a). 

x t

Next, we’ll consider the impulse train p(t). The Fourier transform of p(t) is 

∞ 

P f  −( ) = 1 ∑δ ( f k  f  ) (4.4)
T s


s k =−∞


where f = 1/Ts and f is called the sampling rate. You’ll find a picture of this signal in s s
Figure 4.2(b). 
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( ),  the Fourier transform of the output signal x tLet’s now evaluate X f ( ) . We’lls s
then use this to figure out how much of the information in Carl’s speech signal x(t) is 
lost when it’s sampled. X f( )  corresponds to s

X f ) = F x t  )} = F x(t  p t  )} .  (4.5)( { ( { ) ⋅ (s s 

To simplify X f( ), we’ll use the following property: Multiplication in the time s
domain is convolution in the frequency domain.  With this in mind, we have 

∞ 

( ) = X f  ∗ P f  ( ) ∗ 1 ∑δ ( f kf ), (4.6)X  f  ( )  ( )  = X f  −
Ts s


s k=−∞


where * denotes convolution.  Next, applying simple properties of convolution, we’re 
able to move X(f) into the sum; that is, X f( ) becomess

∞ 

( ) = 1 ∑ X f  −X f  ( ) ∗δ ( f  kf ). (4.7)
Ts s


s k=−∞


Finally, we get an even simpler equation for X f( ) by applying the shiftings
property of the delta function. This gets us to 

∞ 

X f  ( −( ) = 1 ∑ X f  kf ), (4.8)
Ts s


s k=−∞


Let’s write out the summation term by term to help us better understand X f( ) .s
Doing this, we get X f( ) described bys

1( ( ( (X f ) = {X f ) + X f + f ) + X f  + 2 f )+...s s sT (4.9)s 

( (+ X f − f ) + X f  − 2 f )+...}s s 

f f 

1 

–fM fM 

... ... 

1/Ts 

–2fs –fs fs 2fs0 

X(f) P(f) 

(a) (b) 

Figure 4.2 
(a) X(f), the Fourier transform of the input signal x(t) 

(b) P(f), the Fourier transform of the impulse train p(t) 
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Now that we’ve got X f( )  described mathematically, let’s understand what thiss
means using words and a picture. In words, this last equation indicates that X f( )s
consists of a number of X( f )’s, shifted by multiples of f , and all added together. s
Using pictures, for X( f ) shown in Figure 4.2(a), X f( )  is shown in Figure 4.3. s

Xs(f) 

X(f+2fs) X(f+fs) X(f) X(f–2fs)X(f–fs)1 
Ts 

1 
Ts 

1 
Ts 

1 
Ts 

1 
Ts 

1 
Ts 

–2fs –fs –fs+fM –fM 0 fM fs–fM fs 2fs 

D C A B 

Figure 4.3 X (f), the Fourier transform of the ideal sampling output xs(t)s

Here’s where it gets really interesting, so read on carefully. Take a look at Figure 
4.3. Here, we see that as long as A<B and D<C, then the X(f) term in X f( ) does nots
overlap with its neighbors X f  f ) and X f  f ) . This means that, as long as( − ( +s s 
A<B and D<C, X(f) is preser ved perfectly in X f( ) . In other words, as long as A<Bs
and D<C, then all of Carl’s incoming speech signal x(t) is completely safe in the 
sampled signal x t( ) .s

Now A<B means f M < f  f M —that is, f > 2 f . Similarly, D<C meanss − s M 
− +  Mf  f M < −  f ; that is, fs > 2 f . So, as long as f > 2 f , then A<B and D<C, ands M s M 
X(f) is preserved perfectly in X f( ) .s

WOW.  All of the information of x(t), the incoming speech signal, is in the 
sampled signal x t( ) if we just insure that f > 2 f M . That’s always seemed like ans s 
incredible result to me.  It seems logical to think that at least some information would 
be lost when we sample an incoming signal, but not so, as we just saw. 

Getting Back All the Information from the Samples 

Telecommunication engineers jumped up and down with joy, ate ice cream, and had a 
party, all the while shouting, “It’s great that all of Carl’s speech x(t) is found in his 
sampled signal x t( ) , because that means I can sample his speech and not lose anys
information.”  Then, one engineer piped up, “Now, let’s say at some later time I want to 
get Carl’s speech x(t) back from that sampled signal x t( ) . How do I do that?” And alls
the engineers scratched their heads, went back to their chalkboards, and 5 minutes 
later came back and said, “Easy!” 

Take a look at Figure 4.3, which shows us X f( ) . From this figure, it’s clear that ifs
we simply get rid of ever ything except the stuff between − f M and f , and add a gain ofM
T , then we’ll have regained Carl’s speech. How do we get rid of ever ything except the s
stuff between − f M and f ? Easy again—just use a low-pass filter (LPF) to cut off M
ever ything outside of − f and f M , add a gain of T , and voila, Carl’s sound is back.M s
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One last note. We have some 
choice regarding exactly what frequen-

fM f f f0 –fM 

Xs(f) LPF H(f)
cies the LPF will cut out. Take a look 
at Figure 4.4.  As long as the cutoff 
frequency of the filter, f , is betweenc
f M and f  f M , then this LPF will do−s 

a fine job in recovering x(t) exactly 
ffrom its sampled signal x t( ) . Ones

c s scommon choice for the cutoff fre­
quency of the filter is fc = f /2. This Figure 4.4s 
puts the cutoff frequency f smack The use of an LPF with frequencyc
dab in the middle of the X( f ) and its response H(f) to recover X(f) from X

s
(f)

shifted replica X f  f ) .( − s 

Some Commonly Used Words 

A number of terms are commonly used when talking about sampling. First, there’s the 
sampling theorem. The sampling theorem simply states that a signal can be recovered 
from its samples as long as it is sampled at f > 2 f M . We know that, and now we’ves 
got a name for it. 

Next, there’s the Nyquist rate, fN . The Nyquist rate is the smallest sampling rate 
fs  that can be used if you want to recover the original signal from its samples. From 

what we just saw, we know that f = 2 f M .N 

Finally, there’s the word aliasing. I’ll explain this word with the help of Figure 
4.5. In this figure, you see what happens when we sample at a rate of f < 2 f M . Ass 
you can see, in this case, in X f( ) , there is an overlapping of the X( f ) components

with the X f  f ) component. As a result, ( − s 

X s(f) the original X( f ) is no longer preser ved. 
The overlapping of X(f) and X f  f ) 

1 
Ts 

( − s 
is called aliasing. 

f 

Overlapping of term (1/Ts) X (f)

and (1/Ts

) X (f – fs) 

is called aliasing


Figure 4.5 X (f) when fs<2fs M 
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Example 4.1 

Determine the output (in the time domain and in the frequency domain) of an 
ideal sampler with sampling rate 2 Hz (sampling time 0.5 s) when the input 
corresponds to 

( )= STUπ+ 
+   (E4.1)

π+ 

or, equivalently, in the frequency domain 

 ]L − ≤ 0 ≤ 
0 � ( )=  

J
L 

J
L 

(E4.2)
]K XWSX 

Solution: Turning to equation (4.3), we know that the output in the time 
domain corresponds to 

∞

( )= ∑   (78 )δ (+ − 78 ) (E4.3)+   
7 =−∞


∞ k    
s ( ) = ∑ x  δ  t − k x t  

2  (E4.4) 
k =−∞     2  

which is plotted in Figure E4.1(a). 

To determine the output in the frequency domain, we turn the pages back 
until we reach equation (4.8), which tells us simply 

� ( )= ∑ 0 � − 70 ) (E4.5)0 
L ∞

(
8 / 7 =−∞


∞ 

� ( )= J ∑ 0 � − J7 ) (E4.6) 
7 =−∞


( ( (= J⋅[…+ 0 � + J)+ 0 � )+ 0 � −J)+…] (E4.7) 

and this fellow is plotted in Figure E4.1(b). 
xs(t) 

–1/2 1/–1 20 1 

1.5 

. . .. . . 

x(t) = sinπt 
πt 

Xs(f) 

ω 

. . . 
f 

1/2 3/2 2 5/2 –5/2 –2 –3/2 –1/2 
t 

2 

(a) (b) 

Figure E4.1  (a) Signal in time (b) in frequency 
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4.1.2  Zero-order Hold Sampling 

We’ll now talk about a method of sampling that can be physically built, a method called 
zero-order hold sampling. First, I’ll provide you with a brief description using only a 
picture.  The input signal—we’ll use Carl’s speech signal, x(t)—and the resulting 
output sampled signal, x t( ) , are both shown in Figure 4.6. s

Although this type of sampling method is not physically built in this way, Figure 
4.7 gives some insight into what goes on in zero-order hold sampling.  Figure 4.7 
shows the incoming signal, Carl’s speech signal x(t), first going into an ideal sampler. 
Here, it gets multiplied by a pulse train p(t). As we saw previously, this leads to 
impulses of height kT x )  once ever y kT seconds; that is, it leads to(s s s

∞ 

x t  ( −( ) = ∑ x kT )δ (t  kT ). (4.10)i s s

k =−∞


Next, the output of the ideal sampler, x t( ) , enters into a linear time invarianti
(LTI) system. The LTI system is described by the impulse response h(t) shown in 
Figure 4.7 (a rectangular impulse response of amplitude 1 and duration T ). Thiss
leads to the output: for each incoming sample of height x kT ) (in x t( ( ) ), the outputs i
corresponds to “holding on” to the value x kT ) for a duration of T . The total output( s s
x t ( ) is a signal with( )  is shown in Figure 4.7, and it’s described by the words: x ts s
height kT x )  in each time inter val [kT k + 1)T ) .( ,(s s s s 

The Information in the Samples 

We saw earlier that for ideal sampling all the information contained in the input signal 
x(t) is preserved in the output samples x t( ) , as long as we sample at a rate f > 2 f M .s s 
Telecommunication engineers suspected that the same thing was true for zero order 
hold sampling. We’ll now see that their suspicions were correct. 

hold 

x(t) xs(t)
sampling 

Zero-order 

0 Ts 2Ts 3Ts 

Figure 4.6 Input and output of zero-order field sampling 
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Ideal sampling 

X 

t 

x(t) 

p(t) 

Ts 

1 
tt 

xs(t)xi(t) 
h(t)= 

h(t) 

t 

1 

–Ts 0 Ts 

Figure 4.7 What goes on in zero-order hold sampling 

We want to figure out if we can get x(t) back from x t( ) , because if we can, thens
we know that all the information in x(t) is saved in x t( ) . Take a look at Figure 4.7. We s
can see that, to recover the original x(t) from the sampled x t( ) , we want to (1) undos
the effects of the LTI system with response h(t), then (2) undo the effects of the ideal 
sampling (multiplication by p(t)). 

Figure 4.8 shows 
us a system that can 
undo the effects of the xs(t) x(t) 

h–1(t) LPF 

LTI system h(t) and	 fc = fs/2 
gain = Tsthen the effects of the 

ideal sampling. Here, Figure 4.8 System undoing the effects of 
the effects of the LTI 
system with response	

zero-order hold sampling 

h(t) are undone first by 
applying the inverse LTI system, the system with impulse response h t−1( ) . Then, the 
effects of the ideal sampling are undone by (as we saw earlier) using a low-pass filter 
with cutoff frequency fc = f /2.s 

Here’s an important note—the ideal sampling effects can only be undone if we 
sample at f > 2 f M . So again, as long as f > 2 f M then all the effects of the sampling s	 s 
can be undone. 

Example 4.2 

Determine the output (in the time domain) of a zero-order hold sampler with 
sampling rate 2 Hz (sampling time 0.5 s) when the input corresponds to 

( )= STUπ+ 
+  	 (E4.8)

π+ 
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Solution: In the zero-order hold sampler, two things happen: first, you have 
your ideal sampling, which creates impulses at the sample times of 0, 0.5 s, 1 s, 1.5 s, 
and so on. The output of the ideal sampler is shown in Figure E4.2(a). Then, you 
follow that with the “hold” circuit, the LTI system which effectively “holds” each 
sample for the sampling time of 0.5 s. Its output is drawn in Figure E4.2(b). 

x (t)i

–1/2 
–1/21/2 

1/2 

3/2 –3/2 3/2 –3/2 

–1 –12–2 

2t t 
0 01 

1 

x (t) πt 

xs(t) 

= sinπt 

(a) (b) 

Figure E4.2 (a) After sampling  (b) After “holding” 

4.1.3  Natural Sampling 

Another practical method to sample Carl’s speech signal x(t) is natural sampling. The 
workings of natural sampling are shown in Figure 4.9.  Here, we see Carl’s incoming 
speech signal x(t) multiplied by a signal called p(t). This p(t) is made up of a bunch of 
tall, skinny, rectangular shapes of height 1

T and width T; these tall skinny rectangles 
are spaced Ts  seconds apart.  Figure 4.9 shows this more clearly than my description. 

X 

p(t) 

0 tT 2T

x(t) 

t 

xs(t) 

=
 s s 

T T T 

... ... 
1/T 

Figure 4.9 Natural sampling 
0 Ts 2Ts 
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X(f) The output of the sampler is simply 
x t  ( ) ⋅ p t  ) . This signal is just a sequence of pieces 
of x(t). It consists of tall, skinny shapes pieced together, 

1 with one shape coming every Ts  seconds; each shape 
lasts for a time T seconds and has a height shaped by 
x(t). Again, Figure 4.9 shows this better than my 
description. 

s( ) = x t  (

f The Information in the Samples 
–fM fM Again, the question arises: how much 

Figure 4.10 information is in those samples?  The same 
X(f), Fourier transform of input x(t) answer applies: if you sample at f > 2 f M , yous 

can get back Carl’s speech signal x(t) from the 
sampled signal. We turn to the frequency domain as a helpful tool to show that all the 
information is in the samples if f > 2 f M . We begin by assuming that X(f), the Fou­s 
rier transform of Carl’s speech signal, x(t), looks like Figure 4.10. Next, we want to 

s( ) , X ffigure out the Fourier transform of x t s( ) . This is done, using simple math, as 
follows: 

s( ) = F x t  )∗ p t  )} (4.11)X f  { ( (

As a way to simplify this, we’ll come up with another equation for p(t). Because 
p(t) is a periodic signal, it can be written using a Fourier series according to 

∞ 

p t  j 2πkf t  s( ) = ∑ ck ⋅ e (4.12) 
k =−∞ 

where ck  are the Fourier series coefficients. For the p(t) at hand, ck  can be computed 
to get the result 

ck = 1 sinc( nT ) = 1 sin(π nT T )s/ . (4.13)
T T T π nT T /s s s s 

Plopping this p(t) equation in the X fs( ) of equation (4.9) gets us 
∞ 

⋅ j kf t  }X f  { (( ) = F x t  ) ⋅ ∑c  e  2π s (4.14)s k

k=−∞


Using some well-known Fourier transform stuff, we can simplify this equation to 
get 

∞ 
j kf t  }X f  { ( ) ⋅( ) = ∑ck ⋅ F x t  e  2π s (4.15)s


k=−∞


∞


( ) = ∑ck ⋅ X  f  − kf ) (4.16)X f  (s s

k=−∞
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( )  described mathematically. Let me explain this X fNow we have X f ( ) tos s
you in words and pictures. In words, X f( ) consists of many copies of X(f) addeds
together, where the kth copy is shifted by k fs and multiplied by c . Figure 4.11 k
shows this in one simple picture. 

Now, here is the important part.  As with ideal sampling, if you’ll take a look at 
Figure 4.11, you can see that as long as we keep f − f M > f —i.e., fs > 2 f —thens s M 
the signal X(f) is contained perfectly in X f( ) . It can be recovered exactly by simply s

( )  through a low-pass filter (LPF) that gets rid of ever ything but c X f  passing X f ( ) ,s o 
and introducing a gain of 1/c  in the LPF. 0

Xs(f) 

C0 

... ... 

C0 X(f)X(f+fs) X(f–fs)C1 

C1 

C–1 

fs 

C–1 

–fs –fs+fM –fM fM fs–fM fs 

Figure 4.11  X (f), Fourier transform of the output signal xs(t)s

4.2 Quantization 

You’ve made it to the second part of source coding. Take a moment to pause and 
congratulate yourself on getting this far. Now, let’s continue our talk on source coding 
(making an analog signal a digital one). As you saw in the last section, the first part of 
source coding involves the mapping of the analog signal into samples of itself, a pro­
cess suitably named sampling. The next operation carried out in source coding is 
called quantization, and the device which does it is called a quantizer. 

4.2.1  Meet the Quantizer 

A quantizer is a fancy word for a very simple device. It is actually just an “amplitude 
changer”; it takes the incoming signal x t( )  and changes its amplitude (at every time) s
to the closest of one of N allowed values. 

This is most easily explained by example, so let’s jump right into one. To illus­
trate, I’ll need your help. Ever y time I say a number, you turn it into the nearest integer 
between 1 and 10. So I yell out 7.36, and you give me back the number 7. I yell out 3.9, 
you shout back 4. I pipe out 9.22, and you say 9. If you understand this, you totally 
understand quantizers. All they do is output the closest amplitude (among N possible 
amplitudes), given the amplitude of the incoming signal. What could be simpler? 
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Xs(t) Xs(t) 

Quantizer 

{0, 1, ..., 9} 

Allowed output 
amplitudes are 

C0C 4A A03 

B B01 
t t 

Figure 4.12  Illustration of a quantizer and how it works 

To make this even clearer, take a look at Figure 4.12. Here, we see a quantizer with 
input x t( ) (the output of a sampler). Let’s assume that the quantizer allows outputs
amplitudes from the set {0, 1, 2, …, 9}. Consider the sample labeled A on the figure, with 
an amplitude of 3.3322. It enters into the quantizer. The quantizer changes the amplitude 
to the closest allowed amplitude, which in the case of sample A is 3. So we end up with 
sample Ao. The quantizer changes sample B in the same way. 

OK, now that you’ve got it, I’m going to give you a more technical description, 
first in words, then using math, and finally using a picture. Don’t let any of this intimi­
date you, because you’ve already got 
it! In words, a quantizer is a device that X 
maps the amplitude of the incoming 
signal to the nearest allowed level. 
Mathematically, a quantizer is a device 

� = xthat performs the mapping x Q( ) , 
where x refers to the quantizer input, 
x� describes the quantizer output, and 
Q( ) is a function which maps the⋅ 

,values (−∞ ∞) to the closest value in 
the set C = { , y y  2,..., y } , i.e.,1 N 

,Q: (−∞ ∞ ) → C . Graphically, given 
an input of x, the quantizer output x�
can be evaluated using a graph of the 
form shown in Figure 4.13. This figure 
shows that the output corresponds to 
the allowed amplitude closest to the 
amplitude of the input. 

X 

y5 = 2 

y4 = 1 

y2 = –1 

y1 = –2 

y3 = 0 

–0.5–1.5 0.5 1.5 

Figure 4.13  Figure illustrating how a 
quantizer can be described graphically 
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Example 4.3 

Consider the quantizer with the input shown in Figure E4.3(a) and with an input 
amplitude–output amplitude relationship drawn in Figure 4.3(b). Draw a plot of its 
output. 

x(t) x̂ (output amplitude) 

x (input amplitude) 

3 
2 

1 
t 

3.9 
3.1 
1.3 

1 2 3 0.5 1.5 2.5 

(a) (b) 

Figure E4.3 (a) Quantizer input 
(b) input amplitude-output amplitude relationship describing quantizer

Solution: When the input between time 0 and 1 is of amplitude 1.3, then (using 
Figure E4.3(b)) its output between those times is amplitude 1. You can see that in 
Figure E4.4. With the input between times 1 and 2 set to 3.1, then the output 
between those times is set at 3. Finally, with input between times 2 and 3 set to 3.9, 
then the output from Figure 4.3(b) becomes 3. The final output plot is found in 
Figure E4.4. 

x̂(t) 

2 
t 

1 

1 

3 

3 

Figure E4.4 Quantizer output 

Who wants it? 

Now that you know what a quantizer is, you may be scratching your head wondering 
who the heck would want to use a device that maps an incoming amplitude to an 
output amplitude that must be one of N allowed values? The answer is: almost ever y 
telecommunication engineer who wants to build a digital telecommunication system/ 
network. And the reason is best explained by example, as follows. 

Let’s say you are acting as a quantizer: I shout out a number between 1 and 10, 
and you shout back the closest integer between 1 and 10. So I shout “1.4” and you 
shout back “1”. I scream “5.93” and you say “6”. Let’s say we decide we want to build a 
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digital communication system. The information I shouted, any number between 1 and 
10 (6.984, for example) cannot be represented by a digital signal (because there are an 
infinite quantity of numbers between 1 and 10). On the other hand, the numbers you 
shouted back—1, 2, 3, …, 10—can be represented by a digital signal (because there 
are only 10 possible numbers)—so this information can be sent using a digital commu­
nication system. 

So, the quantizer performs a very important task. It turns an incoming signal into 
a digital signal, which can be communicated using a digital communication system. Of 
course, some of the amplitude information is lost when we quantize a signal. When I 
said 1.4 and you replied 1, we “lost” the .4. As you’ll see later, we tr y to build quantiz­
ers in such a way as to minimize the loss of information. 

Quantizer Terms 

Telecommunication engineers, with the best of intentions, have created several terms 
and definitions to make it easier to describe a quantizer. 

First, there’s the word codebook, C. A quantizer changes the amplitude of the 
input to one of N allowed output amplitudes. The set of N allowed output amplitudes is 
collectively called the codebook, or C for short.  Because C contains N amplitudes, it is 
often denoted mathematically by writing C = {y1, y ,..., yN } . In the example of Carl2 
speaking a number, and you, the quantizer, speaking back the closest integer between 
1 and 10, the codebook is simply C = {1,2,…,10}. 

Next, there’s the word codeword, yi . The codeword, yi , simply refers to the ith  of 
the N output amplitudes allowed by the quantizer. In the example of the reader as 
quantizer (speaking back the closest integer between 1 and 10), the codeword y1 
would be 1, the codeword y2  would be 2, and so on. 

Next is the word cell, Ri . The cell Ri  refers to the set of input amplitudes that are 
mapped to the codeword yi . For example, consider the case of the reader (as quan­
tizer) shouting back the closest integer between 1 and 10. If I say 7.6, the reader 
screams back 8. If I say 8.3, the reader again shouts back 8. In fact, any number in the 
set of numbers [7.5, 8.5) is mapped by the reader to the number 8. Hence, the set [7.5, 
8.5) forms a cell. Since this cell corresponds to the amplitudes mapped to y8 = 8 , this 
cell is called R8 . Simple. 

There are two types of cells, granular cells and overload cells. A granular cell 
refers to a cell that is bounded. For example, consider the cell R8  from the previous 
paragraph, which you’ll recall was R8 =[7.5, 8.5). Because this cell consists of a set of 
numbers that do not stretch out to either plus or minus infinity, it is called a granular 
cell. 
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An overload cell, on the other hand, refers to a cell that is unbounded. Consider 
the example of Carl screaming a number, and you screaming back the nearest integer 
in 1 to 10. I say 9.7, you say 10. I say 10.2, you say 10. I say 100.67, you say 10. I say 
100,000, you say 10. From this, you can tell that the cell for the number 10 consists of 
[9.5, ∞ ). Because this cell ends with ∞ , it is called an overload cell. 

Types of Quantizers 

Not only do we telecommunication engineers have words to describe any quantizer, 
but we also have words to help us categorize quantizers. 

A quantizer is called a mid-tread if it has a 0 as one of its codewords (allowed 
output amplitudes). In other words, a quantizer is a mid-tread if it changes any ampli­
tude ver y close to 0 into a 0. For example, let’s say I scream out a number, and you 
map it to the closest integer between –5 and +5. If I scream 0.3, you say 0. If I shout 
–0.2, you shout 0. In this case, you’re acting like a mid-tread quantizer. An example of a 
mid-tread quantizer is shown in Figure 4.14(a). 

A quantizer is called a mid-riser if it does not have 0 as one of its codewords. In 
other words, a quantizer is a mid-riser if it does NOT change amplitudes close to 0 into 
0. For example, let’s say I scream a number, and you shout back the nearest number 
ending in .5, between –5 and 5. I shout out “–0.3,” and you reply with “–0.5.” I shout out 
“0.4,” and you yelp “0.5.”  In this case, you are acting like a mid-riser. An example of a 
mid-riser is shown in Figure 4.14(b). 

X 
X 

X X 

2 

1.5 

1 
0.5 

0 0 

–1 

–0.5 

–2 

–1.5 

–0.5 –1–1.5 –20.5 11.5 2 

–2.5 

2.5 

(a) 
(b) 

Figure 4.14 
(a) Example of mid-tread quantizer (b) Example of mid-riser quantizer 
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(a) (b) 

Figure 4.15 
(a) Example of uniform quantizer  (b) Example of non-uniform quantizer 

A quantizer is called uniform if all its codewords are equally spaced. For example, 
when I scream a number and you reply with the closest integer in 1 to 10, the possible 
codewords are 1, 2, 3, and so on up to 10. These codewords are all spaced apart by the 
same distance (of 1), and so this is a uniform quantizer. This type is shown in Figure 
4.15(a). 

A quantizer is a non-uniform quantizer if all its codewords are NOT equally 
spaced. Let’s say I shout out a number, and you reply with either 1, 3, 6, or 10, which­
ever is closest. In this case, the codewords are not equally spaced, and so you are 
acting as a non-uniform quantizer. This example is shown in Figure 4.15(b). 

Example 4.4 

Looking at the quantizers in Figure E4.5, determine if they are mid-tread or mid-
rise and if they are uniform or non-uniform. 

Solution: The quantizer in Figure E4.5(a): 

1. has zero as one of its codewords, making it mid-tread, and 

2. has codewords which are not equally spaced, making it non-uniform. 

Meanwhile, the quantizer in Figure E4.5(b): 

1. does not have zero as one of its codewords, making it mid-rise, and 

2. has equally spaced codewords, making it uniform. 

x 
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x 

–1 
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–4 

–0.5 
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–1.5 

Figure E4.5 
Two Quantizers 

x 

(a) (b) 

4.2.2 The Good Quantizer 

Now that you’ve got an understanding of what a quantizer is and does, let’s see how to 
build a good quantizer for a given application. 

What Is a Good Quantizer? 

Before we can talk about how one goes about building a good quantizer, we must 
understand what is meant by a good quantizer. We’ll introduce a measure of perfor­
mance that we can use to tell us if a quantizer is a good one. 

Measures of Performance 

A quantizer maps an input amplitude to an output amplitude, and the output amplitude 
takes on one of N allowed values. As we mentioned earlier, we’d like to keep the input 
amplitude and output amplitude close, because in this way less information is lost in 
the quantizer. 

With this in mind, at any moment of time, we can tell how well a quantizer is 
doing by looking at the difference between the amplitude into the quantizer and the 
amplitude coming out of the quantizer. That is, at any moment of time, the quantizer 
performance can be measured by the error signal 

( )= -   _ −   (4.17) 

where x is the input to the quantizer at time t and x�  is the output of the quantizer at 
that same time t. A good quantizer has a small error term, and a poor quantizer has a 
large error term. 

Engineers, however, are usually not so interested in how well something is doing at 
a moment in time (unless, of course, it’s an explosion or something equally dramatic), 
but rather at how things are doing overall, or on average. To provide overall measures of 
performance, engineers assume that there are some things about the amplitudes coming 



J 

J ) 

! '/- 
1:;, = 

'   

- 

J )   

78 ◆  Chapter Four 

into the quantizer that are known (or can be “guess-timated”). Specifically, we assume 
that we can determine (and we usually can) how likely it is that a particular amplitude 
comes into the quantizer; that is, we assume we know the probability density function of 
the amplitudes coming into the quantizer, p x( ) , where x is the incoming amplitude.x

Assuming we know p x( ) , the first overall measure of quantizer performance isx
mean squared error, or mse for short. Mean squared error, as the name suggests, is 
just the average (or mean) of the error e(x) squared; that is, mean squared error is 

'/- = 9[(   −  _) ]= 
∞

∫ (   −  _) $ ( #   
J 

  ) (4.18) 
∞− 

Since we want a quantizer to have a small error (difference between input ampli­
tude and output amplitude), it makes sense that engineers call a quantizer with a small 
mean squared error a “good one.” 

The second overall measure of quantizer performance is signal to quantization 
noise ratio, or SQNR for short. (Some other telecommunication books call this same 
measure SNR, but I find that can be confused with terms we’ll talk about in Chapter 5, 
so I’ll keep the notation SQNR.) SQNR refers to the ratio of the signal input power to 
the power of the error (or noise) introduced by the quantizer. Mathematically, it’s 
described by 

∞ 

∫ (   −   ) $ ( #   
!/ = ∞− (4.19) 

where xm is the average (or mean) x value. Because we want quantizers to have a 
small error, and the size of the error term appears on the denominator (bottom) of the 
SQNR term, it makes sense that engineers say “good quantizers have a large SQNR.” 

A “Classic” 

To give you a better understanding of the overall measures mse and SQNR, what 
follows is a “classic” example of how to compute the mse and SQNR for a particular 
uniform quantizer. Let’s say x is a uniformly distributed random variable between [a,b]; 
that is to say, p x( ) looks like Figure 4.16(a). A uniform quantizer is shown in thex
graph of Figure 4.16(b). Let’s figure out the mse and SQNR of the quantizer for the 
given input signal and quantizer. 

First, the mse. As you’ll recall, the equation for mse is given by 

mse E x x� ) ] (4.20)= [( − 2 

∞ 

'/- = ∫ (   −  _) $ ( #   (4.21) 
∞− 
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Figure 4.16 
(a) p(x) of quantizer input x (b) Graphical description of uniform quantizer 

Now, looking at Figure 4.16(a), we see that p xx ( )  is 0 outside the inter val [a,b], 
and we use this information in equation (4.19) to get to: 

'/- = ∫ (  −  _) $ ( #   (4.22) 

Now, we use two pieces of information to change the integral. We’ll use the 
definition of a cell, Ri , to help us out here (so if you don’t remember, flip back and 
have a quick peek). (1) First, the interval [a,b] can be broken up into cells 
R R2,..., RN . (2) Second, for all values of x that fall into the cell Ri , the output of the1, 
quantizer, x� , corresponds to the value yi . Applying these two pieces of information to 
the integral creates 

'/- = ∫ (  − ) ) $ ( )  #   (4.23)#   +…+ ∫ (  − ) ) $ ( )  

N 

mse = ∑ ∫ (x − y> ) p (x)dxx (4.24)
i=L Ri 

L N 
J L  mse = ∑ ∫ (x − y> ) dx 


 

YSTUV px = 
B  (4.25)B i =L Ri 

Now, consider the ith cell Ri . In this cell, the term x – yi  is simply the difference 
between the input to the quantizer x and the output of the quantizer yi ; that is, x – yi 
is simply the error of the quantizer, which we’ll call erri . Using the substitution 
erri  = x – yi  in this integral leads to: 
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N erri,max J 

mse = ∑ ∫ (err ) d (err )i (4.26)B i=L erri,min 

i 

The limits of the integral erri,min  and erri,max refer to the smallest value of the 
quantizer error and the largest value of the quantizer error in a cell Ri . Let’s calculate 
these values with the help of the graph of Figure 4.16(b). Take a look at the first cell, 
which maps all the values between a and a+ ∆ into the value y1 = + ∆ /2. It followsa 
that the largest value of error occurs when the input x = a+ ∆  is mapped to the output 
y1 = + ∆ /2; in this case the error is ∆ /2. Similarly, the smallest value of the error a 

aoccurs when the input x = a is mapped to the output y1 = + ∆ /2. In this case, the 
error value is – ∆ /2. It’s easily shown that for any cell the largest value of error is 
∆ /2 and the smallest value of error is – ∆ /2. Using this maximum value of error and 
minimum value of error in the integral leads to 

∆ 

L N J J 

mse = ∑ ∫ (err ) d (err ) (4.27)B i

i=L ∆ 

i


− 

Since all N of the integrals are identical, this equation can be rewritten as 
∆ 

L N J J 

B
mse = ∑ ∫ (err ) d (err ) (4.28)

i=L ∆
− 

∆ 

N mse = ∫ (err ) d (err ) (4.29)B ∆
− 

∆ 

L mse =
∆ ∫ 

∆ 

(err ) d (err ) (4.30) 
− 

where the last equation comes about because, looking at Figure 4.16(b), we see N 
steps ∆  in the range B, which tells us N ∆ = B, or N/B = 1/ ∆ . Finally, evaluating the 
integral and applying some simple math leads us to 

∆
1 (err )3|2 mse = (4.31)
∆ 3 − ∆ 

2 

∆ mse = 1 (( )3 

− (−∆)3 

) (4.32)
∆ 24 24 
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1 ∆ 3 

mse = (4.33)
∆ 12 

∆ 2 

mse = (4.34)
12 

As we’ll now see, once you’ve got the mse of the quantizer, it’s easy to get the 
SQNR. In what follows, we compute the SQNR assuming that the inter val of [a,b] 
(shown in Figure 4.16(a)) corresponds to [–A, A]. Starting with the basic SQNR 
equation, we have 

∞ 

∫ (   −   )   $ ) #  
!/ = ∞ − (4.35) 

∞ 

∫ ( )    $ ) #  

1:;, = ∞ − (4.36) 

A2 

SQNR =
∆ 
3

2 (4.37) 

12 
Next, we’ll get a new value for ∆  that allows us to simplify this equation even 

further. Referring to Figure 4.16(b), we see N steps of size ∆  between [a,b] = [–A,A]. 
It follows that N ∆ = 2A, or, equivalently ∆ = 2A/N. Plugging this into the SQNR 
equation leads to 

SQNR = N 2  (4.38) 

Creating the Good Quantizer 

Very simply, we can compute the mse or SQNR of a quantizer, and if the mse is small or 
the SQNR is large, then we can say we’ve got a good quantizer! In this section, we’ll 
talk about how to build the very best quantizers for any given input. 

First off, let me explain what I mean by building a good quantizer. We’ll use Figure 
4.17 to help us out. Notice that you know everything about a quantizer, if you know two 
things: (1) the codewords y y2,..., yN ; that is, the N values that the quantizer allows as1, 
output; and (2) the cells R R  ,..., RN ; in other words, the values of input x that are 1, 2 
mapped by the quantizer to y1 , the values of input x mapped to y2 , and so on. Specifying 
these values is what I mean by building a quantizer. 
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To help us in building the best X
quantizer, we’ll assume that the amplitude 
distribution of the quantizer input x is 
given. That is, if x(t) is the quantizer input, y6 

we’ll assume we know the likelihood that 
x(t) has a particular amplitude x at any 

y5time t. Mathematically, we’re assuming we 
know p xx ( )  , the likelihood that x(t) has R1 RR2 3 RR4 R5 6
amplitude x at any given time. 

y
X 

4 

The First Method: Two Rules 
and an Algorithm This method for y3 

building the best quantizer is so easy 
you’ll whop yourself on the head and say 

y2“I could have thought of that (and been 
famous).” Let’s say I somehow magically 
know the codewords {y1,..., yN } , and I y1 

now want to figure out the best cells Figure 4.17  Quantizer graph indicating the 
{R ,..., RN } (best from the standpoint of variables of the quantizer1
minimizing the mse). It simply makes 
sense that if I’m tr ying to minimize the error, the best cell R1  (inputs x mapped 
to y1 ) is the set of values of x that are closest to y1 ; the best cell R2  (inputs x 
mapped to y2 ) consists of the values of x closest to y2 ; and so on. That’s the first 
rule. Let me state this rule formally for you: 

Rule 1: Nearest Neighbor Rule 

Given the codewords { y1 ,…, yN }, the best cell Ri  is the set of values of x that are 
closer to yi  than any other codeword. 

To make the rule look more impressive, we’ll write it mathematically as 
− 2Ri = {x ∈ | x y  |2 ≤| x y j | ∀ j ≠ i}− i 

As a very simple example of this rule, consider the earlier example of my saying a 
number between 1 and 10 and you, the quantizer, saying back the integer that mini­
mizes the error between the number I shout and the integer you shout back. I shout 
8.7 and you shout 9 (error 0.3); I shout 1.2 and you scream 1 (error 0.2). In this game 
it’s easy to see that if we’re trying build a quantizer to minimize the average error (or 
average squared error), the values I shout between (for example) [7.5, 8.5) are 
mapped to 8 by you. In other words, the cell R8  is made up of the values closest to 
y8 = 8 . That’s exactly what our Rule 1 says. 

Now for Rule 2. This rule is all about how to do this: I give you a cell Ri , and you 
give me the “best” codeword for that cell, yi . (By best, I mean the codeword that 
minimizes the mse.) How do you do that? You choose yi  to be the average value of all 
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the values in the cell Ri . So, if my cell is R8 , and it’s made up of the x values [7.5,8.5), 
and all these x values are equally likely, then the best choice for yi  is the average 
value of 8 (best for minimizing the average value of squared error). Let’s define this 
rule with more mathematical detail. 

Rule 2: Centroid Rule 

Given a cell Ri , the best codeword yi  for that cell is the average value of all the x’s in the 
cell; i.e., the best codeword yi  is the centroid of the cell Ri . 

Mathematically, 

y = E  x  x  ∈ R ] (4.39)i [ |  i 

yi = ∫ x  p  xx Ri 
( ) dx  (4.40)

Ri 

x  dx  ∫ x px ( )  
Riy = i (4.41)p x  dx  ∫ x ( )  

Ri 

We’ll now use these two rules to come up with an algorithm for building the best 
quantizer. Basically, the first rule says: “given the codewords { y1 ,…, yN }, I tell you 
how to get the best cells { R1 ,…, RN }”. The second rule says: “If you give me the cells 
{ R1 ,…, RN }, then I tell you how to get the best codewords { y1 ,…, yN }.” And I say: 
“Hey, if I put these two rules together, I’ll get an iterative algorithm that will allow me 
to come up with both the best { y1 ,…, yN } and the best { R1 ,…, RN }.” It’ll work like 
this: 

Algorithm for Building the Best Quantizer: Generalized Lloyd Algorithm: 

1. a. Set m = 1. 

b. Choose some initial codebook { ym ,…, yN 
m }. Oftentimes a good starting 1 

choice is a uniformly (evenly) spaced set of N values. 
m m2. Given the codewords { ym ,…, yN 

m }, compute the best cells { R1 ,..., R } using1 N 
Rule 1, the Nearest Neighbor rule. 

m m3. Given the cells { R1 ,..., R }, compute a new set of codewords labeled N 
{ ym+1 m+,…, yN 

1 } by using Rule 2, the Centroid rule. 1 

4. a. Compute the mse for the quantizer with codewords { ym ,…, yN 
m }.1 

m+b. Compute the mse for the quantizer with the codewords { ym+1 ,…, yN 
1 }.1 

c. If the percent change in the mse is below some small number (e.g. 1%) 
then STOP; otherwise, replace the value of m by m+1 and return to step 2. 



x 
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Essentially, this algorithm iterates (repeats) Rule 2 to get cells and Rule 1 to get 
codewords; eventually, the algorithm stops when the codewords and the cells together 
create such a low mse that even if we update them further the mse really doesn’t 
improve much. It’s worth noting from a mathematical standpoint that this algorithm 
does not, in general, guarantee the very best choice of codewords and cells, but it 
usually works so darn well that almost every telecommunications engineer uses it to 
build their quantizer. 

The Second Method: Squeezing and Stretching  The second method for creating 
the best quantizer (a quantizer that minimizes the mse) is rather creative. We’ll use 
Figure 4.18 to help. Here, we see a device that’s made up of three parts: (1) a block 
G( ) that maps the input x to the output G(x); (2) a uniform quantizer; and (3) a block ⋅ 

−1⋅G−1( )  that maps the signal y�  to the output G ( y� ) . 

x = G–1(y)x 
G(.) 

y = G(x) y G–1(.)
Quantizer 
Uniform 

Figure 4.18  A new way to create the best quantizer 

G(.) 
y 

G–1(.)
y = 3,6, or 9 x = 2,4, or 5 

maps 

Quantizer 
Uniform

you 

maps 3 2 
[2,3.5) [2,4.5) 6 4 

9 5 

Figure 4.19  Illustration example of the workings of the new quantizer of Eq. 4.18 
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The three parts of Figure 4.18 can work together to create any type of quantizer 
we want. This happens by simply choosing the G( )  and G 1( )  carefully. Let me ⋅ − ⋅ 
illustrate that by example. Let’s say I call out a value between 2 and 10, and you, a 
quantizer, call back either 2, 4, or 5, whichever minimizes the error (whichever is 
closest). So I yell 2.3 and you say 2; I shout 7.9 and you say 5. However, we can do this 
differently. Let’s say that you, our quantizer, are tired and only want to play the quan­
tizer game if you can be a uniform quantizer and call back either 3, 6, or 9. Well, I still 
want a quantizer that maps inputs to outputs of either 2, 4, or 5. Can we both get what 
we want? Yes. Take a look at Figure 4.19, which helps explain how this can happen. As 
we see in this figure, we’ll need to introduce two new functions: first, looking at the 

− ⋅right of the figure, we’ve introduced G 1( ) , which maps the output values you say—3, 
6, or 9—to the output values I want to hear: 2, 4, or 5. That’s half of it; the other half is 
shown on the left of Figure 4.19, where we find the function G( ) . This function⋅ 
changes the inputs you hear me calling out. Consider this: if what I want are outputs of 
either 2, 4, or 5, then I’ll want inputs [2, 3.5) to go to 2 (because those numbers are 
closest to 2); but, because the outputs you say are 3, 6, or 9, then for the numbers you 
hear between [2, 4.5) you’ll say 3 (because these numbers are closest to 3)—so I’ll 
introduce a function G( ) that changes my original inputs of [2, 3.5) to inputs in [2, 4.5).⋅ 
In this way, you always say 3 when I want you to say 2 (and that’s great because the 

− ⋅function G 1( )  on the right of the figure will map your 3 to my 2). By introducing 
these functions G( )and G 1( )  as shown in Figure 4.19, I’ve turned you, Mr. or Ms. ⋅ − ⋅ 
Uniform Quantizer saying 3, 6 or 9, into exactly the quantizer I want. So you see, going 
back to the original Figure 4.18, we can use this to get any quantizer we want, with the 
exact choice of G( )and G 1( )  determining the specific type of quantizer. ⋅ − ⋅ 

In this section we’ll find out what indeed is the best choice of G( )and G 1( ) . By⋅ − ⋅ 
( ) , the G( )andbest choice, I mean: Given the distribution of the input amplitude, p x ⋅ x

− ⋅G 1( )  that allows the quantizer of Figure 4.18 to have a minimum mse. 

Let me stop here to make some brief points and introduce some commonly used 
words. Briefly, the function G( )and G 1( )  are always inverses of one another, so ⋅ − ⋅ 
once you know one you can always specify the other. Now, some notation. G( ) is⋅ 
typically called a compressor because in most cases of practical interest it ends up 

− ⋅smooshing the original input into a smaller set of values. G 1( )  is typically called an 
expandor, because, being the inverse of G( ) , it usually maps the quantizer output⋅ 
values into a larger set of values. Finally, the entire quantizer of Figure 4.18 is often 
dubbed the compandor, with the com coming from compressor and the pandor coming 
from expandor. 

Now, how do we create G( )and G 1( )  in such a way that we minimize the mse⋅ − ⋅ 
of the compandor of Figure 4.18? I’m just going to simply state the general result that 
some researching engineer came up with, because the details don’t really add any 
great insight. The answer is: given an input with distribution p(x), the mse is minimized 
by choosing G( )according to the equation ⋅ 
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X 

( ) = ∫ 3 Kp x  dx  (4.42)G X  ( ) 
0 

The mse of a quantizer using G( )⋅  (as in Figure 4.18) is shown (not here though) 
to be: for inputs with values in the range of [−x , x ] ,max max 

@
J  ZQ` ( )

# ∫ 
  $ 

J (4.43)� ( )  ? LJ − ZQ` 

where q is the size of one cell in the uniform quantizer and � ( )G ⋅ is the derivative of 
⋅G( ) . 

Example 4.5 

Determine the optimal compression characteristic when the input to a compandor 
is described by Figure E4.6. 

Solution: To figure out the G(x), we turn to equation (4.42), which tells us 

� ? (( )= ∫ O   A$ ) #  (E4.10) 

Now, for X in the range of [0,3], we have p(x)=1/6. Applying this to (E4.10) 
leads us to 

( )= ∫ (A ⋅� ? ) O 
L 

N 
L # K ] ≤ � ≤ O (E4.11) 

)
N 

L O 
L

( )= (A ⋅� ? # K ] ≤ � ≤ O (E4.12)∫ 

p(x) 

x 

1/6 

–3 3 

Figure E4.6 The pdf of the input 
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( )= ( )
N 

O
L 

A � K ] ≤ � ≤ O (E4.13)� ?

When X is larger than 3, we use equation (E4.10), which tells us 

� ? (( )= ∫ O   A$ ) # ] � > O (E4.14) 

O A ⋅ L #  + ∫ A ⋅ K # ] � > O (E4.15)= ∫ N 

= ( )
N 

O
L 

A ⋅ ] O � > O (E4.16) 

When X is in the range [–3,0], we have p(x)=1/6. Applying this to (E4.10), we get 

( )= ∫ (A ⋅� ? ) O 
L 

N 
L # ] ≤ − � ≤ K (E4.17) 

K
6 X , 3 ≤ X ≤ 0 (E4.18))1

3 −= ( 
When X is less than –3, we use (E4.10) to discover 

� ? (( )= ∫ O   A$ ) # ] � − < O (E4.19) 

−3 

)1 
3 

X 

= ∫ (K ⋅ 1
6 dx + ∫ (K ⋅0)1 

3 ,dx x  < −  3 (E4.20) 
0 −3 

( )= ( )
N 

O
L 

A − ⋅ ] O   − < O (E4.21) 

Putting it all together, we end up with 

 ) 
) 
) 

1
3 

1
3 

1
3 

6 

6 

6 

K 

K 

K 

, X < −  3−3 ⋅ (


G X  ,  3  −  ≤  X ≤ 3( ) = 
 X ⋅ ( 

(E4.22) 
 3 ⋅ ( , X > +  3 

which is plotted in Figure E4.7. 
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G (x) 

x 
–3 

3 

Figure E4.7 The compressor 

The value of K is traditionally determined by deciding that we want the following: 
when the input is at its maximum value xmax, the output should be G(x ) = xmax . In this max
case, that means we want the value of G(3) to be 3. Requiring this leads to 

( )  O 
L 

N 
A (E4.23)O = O⋅ 

A = N (E4.24) 

4.2.3 The Quantizer and the Telephone 

Let’s say we want to build a quantizer for a telephone, one that’s going to be applied to 
a sampled speech signal. This section discusses how we build such a quantizer and 
explains the standard quantizer (for a sampled speech signal) used in telephone 
systems in the United States and Europe. 

The Idea 

Since all kinds of people use the telephone—little people and big ones, fast talkers and 
slow ones, loud speakers and quiet ones—telecommunication engineers sat down and 
said, “We’ll have to come up with a quantizer that does a good job for most any pos­
sible p xx ( )  (the input amplitude distribution), since so many different people will talk 
into our phone.” And with this, the quest for the best telephone quantizer begins. 

Let’s say we decide, just like those early telecommunications engineers did, that 
we’re going to build our telephone quantizer using the creative compandor (of Figure 
4.18). The issue then becomes how to choose a G( ) that gets a good performance for ⋅ 
most any possible p xx ( ) . We’ll begin by considering the performance measure of 
SQNR. As you may recall (and you can check back if you don’t), SQNR corresponds to 

∞ 

− 2 

SQNR = 
Ps = −∞

(x xm ) px (x) dx  ∫ 
(4.44) 

P  mse  e 
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In the case of a compandor, with inputs between [−x , x ] , we can use equa­max max 
tion (4.43) for mse, and now the SQNR equation becomes 

∞ 

− 2∫ (x xm ) px (x) dx


SQNR = 
Ps = −∞


P q2 xmax p xe ∫ x ( )
dx (4.45) 

12 2

− xmax
 G x� ( )  

Now, from this equation, is there some way we can make the performance (SQNR) 
independent of p xx ( ) ? If we can somehow choose G(x) so that the integral in the 
denominator equals a constant times the integral in the numerator, then the integrals 
cancel, and I get SQNR independent of p xx ( ) . That’s just what we wanted. To get the 
top integral and bottom integral to cancel, we just set G( )⋅ according to (assuming xm = 0) 

|G x  2 K� ( )| =| |2 
(4.46) 

x

K
� ( ) = (4.47)G x  
x


G x  K 
( ) = ⋅ log (x) + C (4.48)e 

While this result makes sense mathematically, I’m now going to take a few 
lines to show you that this result also makes good common sense, too. We want to 
keep the SQNR (ratio of input power to error power) constant. So when big values 
of x (high power) come in, we 
want to have big values of quan-

get smooshed to

get mapped to

Large values of x

smaller range

Small values of x

this very big range 

G(x) = log x 

tization error; and when small 
values of x come in (low input 
power) we want to have small 
values of quantization error. This 
will keep a constant SQNR. Let’s 
see how the G(x) we chose 
above, a log function, creates 
this. We’ll use Figure 4.20, a 
graph of G(x), to help. First, 
consider big values of x (high 
power); when big values of x 
come in, a look at the G(x) of 
Figure 4.20 tells us that big 
values of x are mapped to a small Small values Large values 

of x of x 
range of values in G(x). In the 
overall quantizer/compandor, Figure 4.20 Graph illustrating G(x) = log x 

x 
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this small range of G(x) then passes through a uniform quantizer, where it probably 
gets mapped to only one or two quantization levels. As a result, we have a large range of 
x getting mapped to only one or two levels, which creates a lot of quantization error (high 
error power). So, large inputs (high input power) create lots of quantization error (high 
error power). Similarly, looking at Figure 4.20, small inputs (low input power) get 
stretched out into a larger range of values by the function G(x); therefore, considering 
the overall compandor/quantizer, when this large range of G(x) outputs goes through 
the uniform quantizer, it is mapped to a large number of levels, which results in only little 
quantization error (low error power); so we get low input power creating low error 
power. This is perfect for creating constant SQNR. 

However, when telecommunications engineers took a close look at the G(x) of 
Figure 4.20, one of them had a troubling thought: “What happens when a negative 
input arrives at the G(x) function in the compandor?” Indeed, that was a ver y good 
point, for as you’ll probably notice, the G(x) function of Figure 4.20 does not tell you 
what G(x) will output for negative inputs. But another of the engineers offered a simple 
solution: “We want big inputs (either positive or negative) to give big errors, and we 
want small inputs (either positive or negative) to give small errors. So what we’ll do is 
simple: we’ll use this!” and he pointed to a figure just like Figure 4.21. You see, in this 
figure, what G(x) does to the negative values is identical to what it does to positive 
values: big negative values are compressed by G(x) creating big errors in the uniform 
quantizer (that follows G(x)); small negative values are expanded by the G(x), creating 
small errors in the uniform quantizer (that follows G(x)). So, the problem of what to do 
with negative inputs was quickly solved. 

x 

G(x) G(x) = logx 

G(x) = –log(–x) 

–x 

of G(x) 

–x 

Small values of 
mapped to large range 

Big values of 
mapped to smaller range of G(x) 

Large values Small values 
of –x of –x 

Figure 4.21 Graph illustrating a G(x) with consideration of negative inputs 
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But, alas, that same 
eagle-eyed engineer now 
spotted a new problem in 
the G(x) cur ve of Figure 
4.21: “What shall we do 
when a zero (or number 
close to it) comes into the 
G(x) end of the 
compandor?” Another good 
point, because a look at 
G(x) in Figure 4.21 indi­
cates that it doesn’t tell us 
what to do when the input 
of x equal or close to 0 
comes into the quantizer. 
“Well,” piped out another 
engineer, “I’ve got a simple 

G(x) 

solution. Let’s make G(x) G(x) = –log(–x) G(x) = x G(x) = log(x) 

map an input of x=0 to an 
output of 0, and have it map Figure 4.22 Shape of G(x) used in telephone
inputs close to 0 to outputs system to maintain constant SQNR 
close to 0. And we’ll let the

other two cur ves of Figure 4.21 apply whenever x is not so close to 0. The new G(x)

will look like this.” And he pointed to a figure that looked like Figure 4.22.


Next, engineers decided they needed a careful mathematical description to fully 
describe the goings-on in the G(x) of a telephone compandor (Figure 4.22). It was here 
that the Europeans and the Americans had a falling out. The Americans used a math­
ematical description of G(x) called the µ-law description, while the Europeans made up 
their own description of this G(x) called the A-law description. Since both are just 
mathematical descriptions of the same G(x) of Figure 4.22, I’ll present just one of 
these descriptions. Being North American, I’ll provide the µ -law description. The 
µ -law description of the G(x) of Figure 4.22 is the long equation 


log 


1+

µ x 
e  

G x   xmax  ⋅sgn ( )  (4.49)xmax ( ) = G 
log (1 + µ)e 

where typically µ =255, loge(x) is the natural logarithm of x (also written as ln(x)), and 
sgn( x) is +1 if x is positive and –1 if x is negative. 

Now, we’ll see how the above G(x) equation describes the cur ve of Figure 4.22. 
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At times when x is close to 0 (specifically µx/x <<1), the G(x) equation simplifies tomax

µ x  µ  
x max x max ( ) = G 

log e ( )
⋅sgn ( ) = 

Gmax G x  max 
x 

µ  log e ( )  ⋅ x (4.50)µ   

So, at times when x is close to 0, G(x) is just a value close to x, as in Figure 4.22 
(specifically, G(x) is a constant multiplied by x). At times when x is far from 0 (specifi­
cally µx /x <<1), G(x) in this case reduces to max 

log e 



µ x  
 

G x   xmax  ⋅sgn ( )  (4.51)xmax ( ) = G 
log e ( )µ 

So, when x is far from 0, G(x) is a value proportional to the logarithm of x, as in Figure 
4.22. The µ -law equation for G(x), then, is just another way of saying “see Figure 4.22.” 

Telephone quantizers are built using the compandor (Figure 4.18), and we’ve just 
seen the G(x) that telecommunication engineers decided to use. The final decision was 
how many levels to use in the uniform quantizer of the compandor. After some long 
days of work and one tired slide-rule later it was decided that 256 levels would be used 
in the uniform quantizer. Both the Europeans and Americans agreed, and with that, 
the compandor used in telephones was specified. 

4.3 Source Coding: Pulse Code Modulator (PCM) 

You now have a solid understanding of sampling, the first part of source coding. You 
also have a good understanding of quantizers, the second part of source coders. In this 
section we’ll put samplers and quantizers together, and throw in a third device, to build 
a source coder. Because there are other ways to build source coders, as we’ll see later, 
this source coder is given a ver y particular name—the pulse code modulator (PCM). 

4.3.1  Introducing the PCM 

You’ll probably recall that the source coder is a device that maps an analog input into a 
digital output. One way to build it, called the PCM, is shown in Figure 4.23 where a sam­
pler is used, followed by a quantizer, which is followed by a third device called a 
symbol-to-bit mapper. Here, an analog signal, which we call x(t), comes in at the input side 
of Figure 4.23. A sampler creates samples of this original signal, which we’ll call x t( )  ; yous
can see this in Figure 4.23. A quantizer takes each sample that comes in and creates a new 
sample that comes out; this new sample has an amplitude that takes on one of N allowed 
levels. We’ll call this signal x t� ( ) , and you can see an example of it in Figure 4.23. s 
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x(t) 

t t t

xs(t)

xs(t) xs(t) 

Ts 

2Ts 3Ts

0.7
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1.8 
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0 1 1 0 

= = = =

Quantizer 
Symbol-to-bit 

mapper 
x(t) 

∧ 

1 0 0 0

Sampler 

0 Ts 2Ts 3Ts 0 Ts 2Ts 3Ts 1 2 2 

Figure 4.23 PCM and how it works 

Finally, a device called a symbol-to-bit mapper takes in the quantized samples

� ( ) and, for each sample in x t 
x t � ( ) that comes in, it outputs a set of bits, 0’s and 1’s. As s

0 may be represented by a short pulse of –5V and a 1 by a short pulse of +5V. Let me 
explain how this device works by example. Let’s say the quantizer outputs samples 
which take on one of four levels—for example, the output samples of the quantizer are 
values in the set {0,1,2,3}. The symbol-to-bit mapper associates a unique set of bits 
with each sample; for example, it associates the bits 00 with the symbol 0, it associates 
the bits 01 with symbol 1, ..., and it links the bits 11 with symbol 3. When a given 
sample comes in, it puts out the bits it has associated with that sample. It’s really quite 
a simple device, and you can look at Figure 4.23 to get a better feel for how it works. 

To sum up, the tag-team combination of sampler, quantizer, and symbol-to-bit 
mapper together take an analog signal x(t)and map it to a digital signal, in this case a 
set of bits. 

4.3.2 PCM Talk 

Telecommunication engineers associate a number of terms with the pulse code modu­
lator of Figure 4.23, as a way to help describe its operation. I’ll discuss three of these 
key words here. First, there’s sampling rate, or how many samples per second the 
sampler creates. As you’ll probably recall, the sampling rate is usually chosen to be at 
least two times the maximum frequency of the input, because if you do this, then all 
the information in the original signal is kept in the samples. 

Next, there’s the term symbol rate. This is the number of samples per second that 
leave the quantizer. Since the quantizer creates one sample out for each sample that 
comes in, the symbol rate is also the rate of the symbols that come into the quantizer. 
But, if you take a quick peek at Figure 4.23, you’ll notice that the number of samples 
that come into the quantizer exactly matches the number of samples that come out of 
the sampler, so this number is always equal to the sampling rate. 

0 
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Finally, there’s the bit rate. This indicates how many bits per second come out of 
the symbol-to-bit mapper. This number can be evaluated by the simple computation 

bit rate = symbol rate × # of bits 
symbol (4.52) 

4.3.3 The “Good” PCM 

Telecommunication engineers needed a way to evaluate how well a source coder, like 
the pulse code modulator, was working. Ultimately, they decided that a “good” source 
coder was one that had two things going for it. First, the amount of error in the quan­
tizer part should be small; that is, they wanted a large SQNR. They called this “good” 
because it meant only a ver y little bit of information was being lost at the quantizer 
part. Second, the bit rate of the source coder should be small. These engineers called 
small bit rates “good” because they discovered that a smaller bit rate means a smaller 
bandwidth for the source coder output signal (shown in Figure 4.24), and that was 
good because a lot of communication channels would only transmit signals with a 
small bandwidth. 

... ... ... ... 

High bit rate = many bits/sec Low bit rate = few bits/sec 

T1 (small) T2 (big) 

– 1 – 2 21  (big)  (small) 

in frequency domain in frequency domain 

1/T 1/T 1/T1/T

BW  2/T1 BW  2/T1 

(a) (b) 

Figure 4.24 Illustrating that high bit rate leads to large signal bandwidth 
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However, one bright engineer saw a problem. “Wait a minute! You telecommuni­
cation guys want opposite things. Your number-one want (large SQNR) and your 
number-two want (small bit rate) are opposites. Let’s say you want a quantizer with a 
high SQNR (low error). Then you’ll need a quantizer with a lot of allowed output 
levels, for example, 1024. But this means you’ve got to have 10 bits ( 210 = 1024 ) for 
each symbol, which will mean a HIGH bit rate (as we see from equation (4.52)).” 

He was right. Since what we want are opposite things, we have to define a “good” 
source coder like this: 

1. If the SQNR is fixed, we get a very small bit rate (compared to other source 
coders); or, 

2. If the bit rate is fixed, we get a very large SQNR (compared to other source 
coders). 

All the telecommunication engineers nodded their heads in collective agreement 
with this notion of “good,” and so it was. 

4.3.4 Source Decoder: PCM Decoder 

If you’ve made it this far, it’s very likely that you understand how the source coder, the 
PCM, transforms an incoming analog signal into a digital one, and how to decide on a 
“good” PCM. Taking a look at Figure 4.25, we see what happens to the digital signal 
output by the PCM in the communication system: it’s transformed by a modulator, sent 
across the channel, and picked up by a receiver. Continuing to explore this figure, you 
can see the receiver hard at work: it tries to reconstruct the original signal x(t). Basi­
cally, it’s the receiver’s job to undo the effects of the transmitter and the channel, as 
best it can. As you can see in Figure 4.25, a part of what the receiver does is undo the 
effects of source coding, a process suitably named source decoding, and we’ll talk here 
about how it works (when the source coding is PCM). 

The source decoder which undoes the effects of PCM is shown in Figure 4.26. 
The first thing it undoes is the symbol-to-bit mapping, using a bit-to-symbol mapping, 
which you’ll find in Figure 4.26. This device, for each incoming set of bits, recreates 
the sample, with one of N possible amplitudes, that was output by the quantizer. 

x(t) 

x(t) 

Quantizer Symbol-to-bit 
Mapper 

bits bits 

Channel... ...Modulator Demodulator Source 
Decoder 

PCM Undoes PCM effects 

Transmitter Receiver 

Figure 4.25 What happens to the PCM signal in the communication system 
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Bit-to-symbol 
Mapping 

LPF 

... ... 
t t

Ts Ts 

0 1 

= = 

1 2 

1 
2 

0 

undo symbol-to-bit mapper to undo 

1 0 

nothing here 
undo sampler effects 

quantizer effects 

Figure 4.26 The source decoder for PCM 

The source decoder would next like to undo the effects of the quantizer, but a 
quick look at Figure 4.26 shows that it doesn’t do that. Let me explain what’s going on 
here. A quantizer, as you know, maps inputs with any amplitude, for example, 6.345, to 
an output with only one of N possible amplitudes. For example, for input 6.345, the 
output is 6. So, when a value of 6 is made available to the source decoder, it has no way 
of knowing exactly what input came into the quantizer. Was the input 6.001? How about 
6.212? All these inputs would create an output of 6. 

Looking again at Figure 4.26, you’ll see a low-pass filter (LPF), which is used to 
undo the effects of sampling. That’s because, as you’ll recall, and you can check back if 
you don’t, that the effects of the sampler are totally undone by a low-pass filtering. 

So there you have it. In summar y, the source decoder for PCM is made up of two 
parts, a piece that undoes the symbol-to-bit mapping, followed by a part that removes 
the sampling effects. 

4.4 Predictive Coding 

Pulse code modulation, while popular, is not the only type of source coding out there in 
the telecommunication world today. With a clear definition of what constitutes a good 
source coder, telecommunication engineers set out to make really good source coders. 
This chapter shares some of what they found, which we’ll call predictive coding. 
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4.4.1  The Idea Behind Predictive Coding 

I’ll explain the idea behind the special type of source coding called predictive coding 
with the help of Figure 4.27. This figure uses discrete-time signal notation, and I’ll 
explain that as I go through a step-by-step description of the figure. At a glance, Figure 
4.27 shows a striking similarity to Figure 4.23 (the PCM), with only one main differ­
ence: there is a subtraction after the sampler. I’ll take you in for a close look and we’ll 
see what’s going on. First, we’ve got a signal coming in, which we’ll call x(t). It goes 
right into the sampler, which outputs samples of the incoming x(t). In Figure 4.27, we 
use the notation x  to indicate the nth  sample output by the sampler. Here’s where n
something new and exciting happens. Rather than pass this x  right to the quantizer, n
we first do a subtraction. Imagine that you could somehow magically predict the value 
of the sample xn , creating a predicted value xP . Well, in fact, as I’ll show you a littlen 
later, we can create just such a signal with the magic of engineering. What happens in 
Figure 4.27 is, once the sample x  is generated, a predicted value xP  is immediatelyn n 
created, and subtracted from xn . The output for an input sample x  is the sample En ,n
the error between the actual sample value x  and the predicted value xP .n n 

x(t) 
Quantizer Symbol-to-bit 

Mapper++ 
xn En 

xn 
P 

sampler 

En 

– 
bits 

Main difference between 
predictive coder and PCM Figure 4.27 

The predictive coder 

The error sample E = xn – x P (and not the actual sample value xn ) now entersn n 
into the quantizer. The quantizer maps this error sample to an output sample made up 

�of one of N possible amplitudes. We’ll call its output En . Finally, each of the quantized 
samples is turned to a set of bits by a simple mapping device called the symbol-to-bit 
mapper. It works in just the same way as described in the PCM section. 

4.4.2 Why? 

You might be saying, “That’s all fine and dandy, I follow you, but why would anyone 
want to use this device instead of the PCM?” I’ll take some time out here and answer 
that important question. 
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Let’s say we’ve got a way to get a really good predicted value xP , one that’s really n 
close to xn . In that case, the error signal E = x – xP  is a ver y small number close to 0. n n n 
Now, consider this: use a quantizer that, for each input sample En , outputs a sample 
with an amplitude that takes on one of two possible levels, either –δ or +δ, where δ is a 
very small number close to 0. This creates two things that telecommunication engineers 
get excited about: (1) because the quantizer input E  was a small number close to 0 ton �begin with, the error introduced by the quantizer ( E – En ) is small, and we get a large n 
SQNR; (2) also, because the quantizer only creates two possible output levels for each 
sample, the number of bits per sample is low; this leads to a low bit rate. 

In a word, WOW—using the predictive coder, it may well be possible to get high 
SQNR and low bit rate, everything the telecommunication engineer wants from a 
source coder! 

4.4.3 The Predicted Value and the Predictive Decoder 

The key to the good working of the predictive coder is coming up with a good pre­
dicted value xP . In fact, there are two different types of predictive coders, and we’lln 
talk at some length about how each comes up with the predicted value xP .n 

But before we go into that, let’s take a look at the source decoder for a predictive 
coder, the device located in the receiver that undoes the effects of the predictive coder 
(as best it can). This device helps the receiver output the original information signal 
that was sent. 

The source decoder is shown in Figure 4.28. It works to undo the effects of the 
predictive coder in reverse order. It begins with a bit-to-symbol mapper, a device which 
undoes the effects of the symbol-to-bit mapper in the source coder. Next, it would like 
to have a device that undoes the effects of the quantizer; but since there is no such 
device (as we saw in section 4.3.4), it moves on. The next effect to tr y to undo is the 
subtraction of xP  at the encoder. This is undone at the source decoder by adding back n 
the value xP . Finally, the effects of sampling are undone by a low-pass filter; and voila,n 
you’ve got a source decoder which undoes predictive coder effects. 

LPFBit-to-symbol 
Mapper ++ 

+ 

bits En xn 

xn 
P 

received 
after being 

sent across channel 

undoes symbol-to-bit nothing here to undo removal of undo sampler effects 
mapper undo quantizer effects predicted value 

Figure 4.28 The decoder for a predictive coder 
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Now, here’s a ver y important point. To make the source decoder described above 
(and seen in Figure 4.28) possible, telecommunication engineers are always ver y 
careful to make sure that any signal xP  they remove during source coding is a signal n 
that can be created and added back at the receiver side during source decoding. In the 
next sections, we’ll explore two predictive coders, one per section. We’ll detail (among

Pother things) how these devices get xP , and how they use only x  values that can ben n 
created and added back at the receiver during source decoding. 

4.4.4 The Delta Modulator (DM) 

The Delta Modulator is the first of two predictive coders that we’ll talk about in this 
book. Being a predictive coder, it works in just the way we saw in Figure 4.27. All we’ll 
do here is detail how this system creates its xP , and understanding that, we’ll explore n 
in a bit of mathematical detail its inner workings. 

How the DM creates an ! 

This predictive coder creates the predicted value xP  using a really simple idea: If you n 
sample an incoming signal ver y quickly, then a good estimate of the current sample 
x  is simply the previous sample value xn−1 . That is, a good predicted value of the n
sample x  is xP = xn−1 .n n 

However, as one telecommunication engineer was quick to point out, there was a 
problem with this idea. “If you use xP = xn−1 ,” she argued, “there’s no way to add backn

Px  at the decoder (Figure 4.28), because xn−1  is a sample of the input signal, and then 
decoder (in the receiver end of the channel) has no way to create exactly that.” 

And with that the telecommunication engineers scratched their collective heads 
for a while, until one day one of them screamed, “I’ve got it! Have a look at this.” She 
pointed to the source decoder in Figure 4.28. “While the source decoder doesn’t have 
access to the x  (or xn−1 ), it does have access to x�  (and x�n−1 ). So, we can use x�n−1  asn n
the predicted value, rather than xn−1 .” That seemed a good idea, and ever yone was in 
agreement. After some time and a bit of hard work, engineers decided to use x�n−1  as 
the predicted value, that is, xP = x�n−1 .n 

Some engineers decided to fine tune this idea, and as they played around with it, they 
Pfound that a slightly better choice of xP  is x =a x�n−1 , where a is a value very close to, but n n 

just a little less than, 1; specifically, they figured out that the optimal value of a was 
1 a = Rx ( )  

(4.53)
R ( )0x 

where R (k) = E [xn ⋅  xn – k].x

In what follows, we’ll use the predicted value xP =a x�n−1 .n 
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Figure 4.29 The delta modulator and source decoder block diagram 

The Block Diagram of the DM 

Let’s now take a look at the block diagram of the DM to get an understanding of how 
this device is built. Both the DM and the source decoder are shown in the block 
diagram of Figure 4.29. The solid line shows that this DM and source decoder has the 
same form as the general predictive coder and source decoder of Figures 4.27 and 
4.28. The dashed lines show the creation of the predictive value xP =a x�n−1  at the DMn 
and decoder. 

Let’s take some time out now and describe how, in this block diagram, the value 
Px =a x�n−1  is created at the DM and decoder. We’ll start at the source decoder, because n 

it’s easier. At the source decoder, the value x�n is available at the output. So, all we do— 
and the dashed lines of Figure 4.29 show this—is take the available x�n , delay it by one

Psample time (with the z −1  block) and multiply it by a; and then we’ve got it: x = a x�n−1 .n 

At the source coder, the value of x�n  is not readily available, so what the dashed 
lines on the coder side of Figure 4.29 do is this: (1) first make x�  by adding xP  andn n �E  (this is how x�  is made at the decoder), then (2) delay the x�  that’s just made andn n n
multiply it by a to get xP =a x�n−1 .n 

The Sampler and the Quantizer in the DM 

While the block diagram of the DM is well-described by Figure 4.29, and a description 
of how it works is also given, there are a few things about the DM that have been left 
unsaid, and in this section I want to say them. These are things regarding the sampler 
and the quantizer. 

The Sampler: First, we said earlier that the idea behind the DM was that if you 
sampled a signal fast enough, then the previous sample xn−1  was a good predicted 
value for xn , and we modified that slightly and came up with the predicted value of 

Px =a x�n−1 , where a is a value close to 1. What I want to explore here is: how fast does n 
the sampler in a DM actually sample the signal x(t) such that the sample xn−1  is a ver y 
good predicted value of x ? I don’t know exactly how telecommunication engineersn 
came up with this, and I expect that it was trial and error, but ultimately when x(t) is a 
speech signal the sampler tends to work at four times the Nyquist rate, or eight times 
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the Nyquist rate; that is, the sampler tends to work at eight times or sixteen times the 
maximum frequency of the incoming signal x(t). 

The Quantizer: Next, let’s consider the quantizer. The quantizer maps the predicted 
�error, En = x – xP , to an output E  with one of N levels. How many output levels (N)n n n

x
does the quantizer use? The sampling rate in a DM is so high that the previous sample 

n−1  (and the value a x�n−1 ) is a very good predicted value for x , and so the error term n
E = x – xP = x –a x�n−1  is ver y close to 0. Because of this, a quantizer can be built that is n n n n 
ver y good and ver y simple: the quantizer maps the input En  (close to 0) to an output with 
one of only two levels, either +δ or –δ where δ is a value close to 0. The exact value of δ 
depends on the statistics of the input samples x .n

4.4.5 The Signals in the DM 

Now we’ll see what the different signals in the DM look like, given a particular input to 
the DM. Have a look at Figure 4.30; this tells you what signals we’ll be studying. We 
will assume that a = 1 to keep this analysis nice and simple. Let’s say the input to the 
DM, point A in Figure 4.30, looks just like Figure 4.31(a). Then, after sampling, the xn 
samples that pop out of the sampler (at point B) are shown in Figure 4.31 (b). 

x(t) 
Quantizer Symbol-to-bit

Mapper+ 

× 

+ 

+ 

× 

+ 

– 

xn En En Enbits 

Z–1 
Z–1

xnBit-to-symbol
Mapper 

channel,

... LPF
+ 

+ 

a

C DB E F

xn
p 

xn
p modulator,

demodulator 

∧ ∧ ∧ 

a=1 

A 

Figure 4.30 Block diagram of the DM showing signals of interest 

We’ll study all the other signals of Figure 4.30, starting our study at the first 
Psample time n = 0. We’ll assume that the initial value of xP  is 0, i.e., x0 =0. Then,n 

following Figure 4.30, we discover the following: (1) At C: the signal 
E0 = x0 − xP = x0 − 0 = x0 is positive. (2) At D: with a positive value entering the0 �quantizer, the output of the quantizer is + ∂ . (3) At E: once the value E =+ ∂  is sentn 
across the channel, the value at point E is + ∂ . (4) At F: the output x�0  is then 

Px�0 = x0 + ∂ =  0 + ∂ = ∂ . 

Let’s consider the next sample time n = 1: (1) At C: we have the signal
P P PE1 = x1 − x�1 

P . Let’s evaluate the value of x1 : x1 = a x  �n−1 = 1 x�0 = +∂  . Using this x1 
value, we have E = x1 − xP = x1 − ∂ . Assuming x1  of Figure 4.31(b) is larger than ∂ ,1 1 
then the value E1  is positive. (2) At D: the input to the quantizer is positive, so it 

�follows that the quantizer output E  is + ∂ . (3) At E: assuming the value + ∂  is safelyn
sent across the channel, then the value at point E is also + ∂ . (4) At F: finally, the 

Poutput value is computed as x�1 = x1 + (value at E) = x1 
P + ∂ = ∂ + ∂ =  2∂ . 
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Figure 4.31 Following the signals in Figure 4.30: (a) at point A; (b) at point B; 
(c ) at point C; (d) at point D and E; (e) at point F
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We can continue the computation of the signals in Figure 4.30 at each and ever y 
time instant (and if you try problem 4.7 you’ll get just that opportunity). Ultimately, we 
end up with the values at point C of Figure 4.31(c), the values at point D and E of 
Figure 4.25(d), and the values at point F of Figure 4.31(e). 

I don’t know if it’s clear to you yet from the description above and Figure 4.31, but 
there’s a very easy way (a shortcut) to describing the input-output ( x  to x�n ) relation-n
ship of the DM (assuming a = 1). If the input value is larger than the predicted value, 
then increase the output by δ; if the input value is smaller than the predicted value, 
then decrease the output by δ. And to help you do this, remember—the predicted 
value is just the previous output value. 

A rather neat result is easy to see from the above shortcut. Since you’re always 
increasing or decreasing the output by δ, then if the output is 0 at start-up, the output 
at any later time is always some kδ, where k is an integer. 

The input–output ( x  to x�n ) relationship can also be resolved using a different n
shortcut, which uses a graph. Assume a = 1. First, draw the input signal using a 
dashed line, as I’ve done in Figure 4.32. Then add little dashes on the x-axis at the 
sample times. I’ve also added this into Figure 4.32. Now, at time 0, the predicted value 
is 0. Because this is smaller than the input at time 0 (see Figure 4.32), increase the 
output by δ (which means the output becomes its initial value of 0 plus δ, which is δ). 
This is drawn in Figure 4.32 using a solid line (see the line labeled 1). Since the output 
doesn’t change until the next sample comes in, draw the output as constant over the 
time before the next sample arrives. Again, I show this in Figure 4.32 (see the line 
labeled 2). 

Now, at sample time 1, a new input x(t)
sample arrives; we can determine the 
value of this sample by looking at the 

xn 

dotted line of Figure 4.32 at sample 
time 1. At this sample time, the pre­
dicted value (which equals the previous 
output value) is δ. Because in this case 
the input value is bigger than the 
predicted value, increase the output by 
δ. This is shown in the solid line of 
Figure 4.32 (see the line labeled 3). 2 

Since the output value doesn’t change 1 
until the next input sample arrives, 

0 1 2 3 4 5 

3 

4 

6 
t 
ndraw the output as constant over that 

time, as seen in Figure 4.32 (see the (b) 
line labeled 4). Figure 4.32 Graphical evaluation of 

input-output relationship of DM 
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Continuing to do this for all other sample times leads to the input-output relation­
ship seen in Figure 4.32. We see from this figure that the output x�  follows the inputn
x(t) with a staircase-type 
waveform, increasing and x(t)
decreasing by δ to tr y to keep 
up with the changes in x(t). 

3.1 
Example 4.6 

Determine the output of a 
delta modulator with a=1 
and δ=1, when the input 2.1 

shown in Figure E4.8 is 
sampled at a rate of one 
sample per second. 1.1 

Solution: To deter­

mine the output, we

return to the prophetic
 0.1 
words uttered in Section 0 1 2 3 4 5 

t 

4.4.5: “if the input value is 
larger than the predicted Figure E4.8 Input to the DM

value, increase the output


ˆby δ ; if the input value is x(t)
smaller than the predicted x̂(t)
value, then decrease the 
output by δ.” Figure E4.9 
shows you how to apply 
the rule and the output 
that pops out when you 
do. 

input 
value 

t 
1 

0.1 

input

x 
2 3 4 5 

output

predicted

value 

predicted value 
value 

Figure E4.9 Output of the DM 
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4.4.6 Overload and Granular Noise 

Telecommunication engineers saw some interesting things going on in the input–output 
relationship of a DM, and they made up some words to describe what they saw. The first 

interesting things they saw were at 
x(t) times when the input is hardly 

changing. Let’s consider an input
xn	 that’s near constant at the value 0.5. 

We’ll assume that the output is 
initially 0, and we’ll assume d = 1, as 
shown in Figure 4.33(a). What’s 
happening is this: at time 0, the

1 output increases to d = 1; then at 
time 1, the output decreases back to 

... 0; then, at the next time the output0.5 
increases back up to 1. Ultimately, ... we have the output jumping back

t and forth between 0 and 1 while the 
0 1 2 3 4 5 n 

input is constant at about 0.5. (You 

(a)	 can check this out yourself using 
either of the shortcuts described in 
the previous section.) Telecommuni­
cations engineers called this

x(t)	 phenomena—the output jumping 
xn between two values when the input 

... is small—granular noise. 
... 

The next interesting thing 
happened at times when the input 
changed ver y quickly. Take a look, 
for example, at the input of Figure 
4.33(b). Here, the output increases 
by + δ at each time. (Again, you can 
check that this is what the output 
does by using one of the shortcuts I 
told you about earlier.) But you’ll 
notice from Figure 4.33b that even 
with the output increasing by + δ att 

n each sample time, it still falls further 0 1 2 3 4 5 
and further behind the input, and it’s 

(b)	 unable to keep pace with the quickly 
Figure 4.33	 changing input. Telecommunication 

(a) Granular noise; (b) Overload noise engineers labeled this phenomena 
overload noise. 
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Figure 4.34 (a) Demonstrating the effect of decreasing δδδδδ on granular noise 
(b) Demonstrating the effect of increasing δδδδδ on overload noise 

Because granular noise and overload noise were experiences telecommunication 
engineers wanted to avoid, they found themselves contemplating the following: “We’re 
free to change δ; how can we change δ to decrease granular noise? And, how can we 
change δ to get rid of that unwanted overload noise?” 

Let’s first consider the possibility of changing δ to decrease the amount of granu­
lar noise a DM experiences. Granular noise occurs when the output oscillates above 
and below a slowly changing input, as in Figure 4.33(a). Let’s see what happens if we 
decrease δ (Figure 4.34(a)). We see in this case that the amount of oscillating above 
and below the input has decreased significantly; so, decreasing δ decreases the granu­
lar noise. 

Let’s next consider the case of overload noise, an event which occurs when a 
quickly changing input can’t be followed by the output, as shown in Figure 4.33(b). 
Let’s see what happens in this case with an increase in δ. Figure 4.34(b) shows us just 
this. Increasing the δ allows the output to follow the input more closely, decreasing the 
amount of overload noise. 

So, decreasing δ decreases the granular noise, while increasing δ helps cut down 
on the overload noise. Given that, how do telecommunication engineers choose δ? 
Typically, they do one of two things. The pick a value of δ that they find creates a 
compromise between the amount of granular noise and the amount of overload noise; 
or, if they’re getting fancy, the value of δ is updated while the DM is running, increas­
ing at times of overload noise and decreasing at times of granular noise. 
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4.4.7 Differential PCM (DPCM) 

I’ve talked at length about one type of predictive coder, the DM, and you got through it 
all. Way to go. Now, I’m going to talk (but, thank goodness, not as much) about a second 
type of predictive coder, called the differential PCM, or DPCM for short. Being a predic­
tive coder, the DPCM is built as shown in Figure 4.27. What makes the DPCM different 
from the DM is the predicted value, xP , explained in detail in the next section.n 

The Predicted Value 

The predicted value xP  used in the DPCM came about like this. A telecommunica­n 
tions engineer one day had the idea to use the previous K samples to come up with a 
predicted value. Specifically, he recommended that we get the predicted value accord­
ing to the equation 

K

P
x = ∑ a x  − (4.54)n k n  k 


k=1


xn
P = a xn−1 + a xn−2 +...+a  xn  K  (4.55)1 2 K − 

Now, this engineer had two problems to work out. First, as you’ll recall (and if you 
don’t, a quick peek at Figures 4.27 and 4.28 will work to remind you), the value xP  isn 
needed at both the predictive coder and the predictive decoder. But, the values of xn−1 , 
..., x  used in the xP  equation are only available at the predictive coder (and aren’tn N n−
available to the predictive decoder). 

Our engineer, looking at the decoder of Figure 4.28, asked, “What information is 
there at the decoder that can be used to create a predicted value xP ?” He answered by n 
realizing that, while x −1 ,..., x −  isn’t available there, x�n−1,..., x�n  K  can be found there.n n K − 
“I’ll just change my equation slightly to this,” he said and wrote 

K

P
x = ∑ a x  � − (4.56)n k n  k 


k=1


xn
P = a x  �n−1 + a x  � +...+a  x  �n  K  (4.57)1 2 n−2 K − 

The final question that remains to be answered is this: What do we use for the 
values a1 , a2 , up to aK ? This takes a bit of math. To start, we’ll decide we want to 
choose a1 , a2 ,..., aK  such that xP  is as close as possible to xn ; specifically, we’lln 
decide we want to choose a a2,...,a  such that1, K 

1, [( Pa a2,..., a = arg min E  x  − x )2 ] (4.58)N n n

a a 
, ,...,  a1 2  N 

where arg min means “the value of a1, a2, ..., a  that minimizes.” N
a1, a2, ..., aN 
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Substituting in the xP equation in (4.56) leads ton 
K 

arg min E  x  [( n ∑
− a x  �k  n k  − 
2) ]  (4.59)a a  a1, =
,..., N2 

a a,1 2  a k,..., N 1 

is close to xn k− , we can rewrite this as 

= 

Assuming that n k−x�
K 

∑
− a x  k  n k  − )
2 ] (4.60)arg min E  x  [(a a  a1, =
,..., N2 n 
a a,1 2  a k 1 

From now on, we will use mathematics to come up with a more explicit equation 
for the a1  to aK  values. We’ll start by tr ying to find the best a1 , by taking the deriva­
tive of the above term with respect to a1  and setting it to 0. This leads to 

K 

=,..., N 

∑
−E[2 ( ) ( )] 0 (4.61)
−
x  a x  k  n k  − x⋅
 ⋅
 =
1 
1 

And now we just do some simple math to come up with 
K 

− 
= 

n n 
k 

1 ∑−−− ⋅ E x x  2 [ n n  ]1− 0 (4.62)a x  x  k  n k  n− =

k 1= 

K 

∑
−E x x  [ n n− a E x  x  [ n k  −] ] 0 (4.63)
=
k1 1

1


− 

Using correlation notation, we can rewrite this according to 
K 

= 
n 

k 

∑
−Rx a R  k x k )
=
0 (4.64)( )1 (1−

k 1= 

K 

∑
a Rk x −
k )
=
Rx(1 (1) (4.65) 
k 1 

That’s the equation we get when we tr y to get the best a1 . When we repeat this to 
get an equation for the best a2  up to aK , we get a total of K equations. Putting these 

= 

equations together by using simple matrix notation, we get the following: 



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

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




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

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



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
(
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⋅
⋅
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() 
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( ) −( )
 ( )−




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
 




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 
… 

(4.66) 
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R R K ) , you get the bestSo, if someone gives you the statistics R (0), (1),..., (x x x 
a a2,...,a  by simply solving the above matrix.1, K 

Example 4.7 

Figure out the best choice for the values of a  and a2 in a 2-tap predictor when the1
input has a correlation function given by 

, ( )= L (E4.25) 

, ( )= , (−L )= abK (E4.26) 

, ( )= bK Ja  (E4.27) 

Solution: We turn to equation (4.66), and use K=2, which leads us to 

 ,  ( )  , (−L )  =L   ,  ( )    =  , ( ) (E4.28) L , ( )  , (K )  =J     J 

 L abK   =L   abK  
   (E4.29)
 abK L  

 
=J 

 =



bK Ja 

 =L   L abK 
−L 

 abK   =     (E4.30)=J   abK L   bK Ja 

 =L  M  L − abK   abK   =    (E4.31)
=J  O 


− abK L   bK Ja 

M  O  
= 

 c  (E4.32)
O  K  

 L  
=  J  (E4.33)

 K  

The Block Diagram 

This section provides you with a block diagram of the DPCM, and its source decoder, 
so that you can get an understanding of how people build this device. Figure 4.35 
shows that block diagram. The solid line shows how the DPCM and its decoder 
maintain the general predictive coder–decoder structure of Figures 4.27 and 4.28, and 
the dashed line shows you how the predicted value is generated. Here, the block 
called N-tap predictor receives x�n  as input and outputs 
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K 
P
n = ∑ a x  �k n k  . (4.67)− 

k=1 

It’s not immediately apparent from Figure 4.35 just how the predicted value of 
equation (4.67) is being generated at the source coder. The source coder is creating 

� in two steps: (1) first, it creates the value �n by adding x

�


EP
nx

xP
n 

P
n ; then (2) itx to n

creates the predictor value x  using this .n

Quantizer Symbol-to-bit 
Mapper+ 

+ 

+
+ 

En En En 

sampler 

∧ 

∧ 

Bit-to-symbol
Mapper LPF 

channel, 

... 
+ 

+ 

xn 

xn 

xn 

xn
p 

– 
xn

p
modulator, 

demodulator 
K-tap Predictor 

K-tap Predictor 

∧ ∧
x(t) 

Figure 4.35 DPCM and its source decoder 

Finally, there are a couple of details regarding the source coder that I want to 
briefly touch on. These are details about the sampler and the quantizer in the DPCM of 
Figure 4.35. First, there’s the question of how fast the sampler samples. In three words, 
not ver y fast (when compared to the DM). Typically in DPCM, the sampling is at the 
Nyquist rate or perhaps two times the Nyquist rate; that is, the sampler is sampling at 
twice the maximum frequency of the input, x(t), or four times that maximum frequency. 
Then there is a question about the quantizer—how many allowed output levels N does it 
use? Typically, the quantizer operates with 8, 16, or 32 allowed output levels. 

4.5 Congrats and Conclusion 

Congrats! The end of a (rather lengthy) chapter. To recap, and I’ll be brief, we learned 
in detail about two parts of the source coder, the sampler and the quantizer. First, we 
learned about three types of samplers and saw the coolest of results: as long as you 
sample at (at least) two times the maximum frequency, you can get your original signal 
back from your samples. Then we learned about quantizers, a fancy word for an 
“amplitude changer”—it maps the input amplitude to one of N allowed output ampli­
tudes. You also saw two ways to build a quantizer that minimize the average error 
between input and output. Not only that, but you saw the quantizer most commonly 
used in telephone communications. 

Then we decided to get adventurous, and we put the sampler and quantizer to­
gether and built a source coder called a PCM. Next, we considered a different source 
coder called the predictive coder. It looked a lot like the PCM, the only difference being 
that, before you got to the quantizer, you removed a predicted value from your sample. 
We talked at length about two different types of predictive coders, the DM and the 
DPCM, and finally, you came here to the summary, where we wrapped it all up. 

If you feel you want more on this material, and be assured there are books and 
books on this stuff, have a look at the references. 

x 
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Problems 

1. If you know that the signal x(t) is completely characterized by the samples 
taken at a rate of 5,000 Hz, what (if anything) can you say about X(f)? 

2. Determine the Nyquist sampling rate for the following signals 

( )= STU(MKKK π + )
+   (a) π + 

(Q4.1) 

( )= STU (MKKK π + )
(b) +   

J J (Q4.2)π + 

3. Consider the signal 

+ ) )=   ( )∗   ( )+ (Q4.3) 

where 

1 ( ) = 0, X f  f >1000 de (Q4.4) 

2 ( ) = 0, X f  f > 2000 de (Q4.5) 

What is the minimum sampling period that ensures that y(t) is completely recov­
erable from its samples? 

4. Assume the signal x(t) has the frequency representation shown in Figure Q4.1. 

(a) What does the output of an ideal sampler look like in the frequency

domain?


(b) What is the minimum sampling rate that I can use and still recover my 
signal from its samples?

 X (f) 

–f1 –∆f –f1 –f1+∆f f1 –∆f f1 f1+∆f 

Figure Q4.1  The input 

f 
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5. Consider zero-order hold sampling. 

(a) If the input x(t) has a Fourier transform shown in Figure Q4.2, what

does the output waveform look like (1) in the frequency domain and

(2) in the time domain? Assume sampling at the Nyquist rate.

(b) If the input x(t) has a Fourier transform shown in Figure Q4.2, what

does the output waveform look like (1) in the frequency domain and

(2) in the time domain? Assume sampling at TWICE the Nyquist rate.

x (f) 
Figure Q4.2 The input 

f 
–fm fm 

6. Plot the output of a sampler in frequency given: 

•	 The input signal has maximum frequency 5,300 Hz. 

•	 Ideal sampling is used. 

•	 Sampling is at a rate of 5,300 Hz. 

•	 The input signal in the frequency domain is triangular (i.e., it is a maximum 
at 0 Hz and degrades to 0 linearly as frequency increases to 5,300 Hz (and 
to –5,300 Hz). 

7. Consider a quantizer with an input described in Figure Q4.3. 

(a) Draw a quantizer with 7 levels. Make it mid-tread, let it have –3 as its

smallest output value, and make sure that the step size is 1.


(b) Evaluate the mse of your quantizer given the input. 

(c) Evaluate the SQNR. 

(d) If the input to the quantizer has an amplitude with a probability distribution 
uniform between –3.5 and +3.5, what is the SQNR of the quantizer? 
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1/4 
1/6 

–3 2 

p (x) 

Figure Q4.3 The input pdf 

x 

8. Find out how many levels a quantizer must use to achieve an SQNR greater 
than 30 dB given: 

•	 The incoming audio signal is sampled at its Nyquist rate of 8,000 samples/ 
sec. 

•	 The amplitudes output from the sampler have a uniform probability distri­
bution function. 

•	 A uniform quantizer is used. 

9. Determine the optimal compression characteristic for the input x whose prob­
ability density function is provided in Figure Q4.4. 

10.	 (a) Plot the µ =10 compressor characteristic given that the input values are 
in the range [–2.5,2.5]. 

(b) Plot the corresponding expander. 

p (x) 
Figure Q4.4 The input pdf 

1/6 

1/12 
x


–4 –2
 2 4 
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11. Evaluate the symbol rate and the bit rate of the PCM system described by the
following: 

•	 The sampling rate is 5,300 Hz 

•	 The quantizer is an 8-level quantizer. 

12. A computer sends:

•	 100 letters ever y 4 seconds 

•	 8 bits to represent each letter 

•	 the bits enter a special coding device that takes in a set of bits and puts out 
one of 32 possible symbols. 

What is the bit rate and what is the symbol rate out of the special coding device? 

13. Over the time 0 s to 2 s, determine (1) the input to the DM, (2) the output of 
the DM, and (3) the times of granular and overload noise given: 

•	 The input to the DM is x(t) = t2 

•	 The sampler offers 10 samples/second 

•	 The step size of the DM is 0.1 V 

14. (a) Draw the output of the DM given: 

•	   The input corresponds to x(t)=1.1t + 0.05 

•	  The input is sampled at times t = 0,1,2,3,4 

•	  The step size is 1 and a = 1. 

(b) Repeat (a), this time using a = 0.5. 

15. A two-tap predictive filter is being designed to operate in a DPCM system. The 
predictor is of the form 

(Q4.6) (

! = =L  ( −L + =J  (−J 

(a) Provide an explicit equation for the optimal selection of a  and a2 (in terms 1
of autocorrelation functions) which minimizes the mean squared prediction 
error. 

(b) Provide a general equation for the mean squared prediction error using 
the values determined in (a). 

(c) Determine the values of the predictor taps in (a) and the prediction error 
in (b) given: 

 n 
( ) = 


1 − , n = 0,1, 2, 3 3R nx (Q4.7)

 0 , else  



5 
Chapter 

Getting It from Here to There:

Modulators and Demodulators 

In many ways, this is the most important chapter of the book, because there’d be no 
telecommunicating without the devices described in this chapter. 

5.1  An Introduction 

This chapter is really about two simple things: the modulator, and its opposite, the 
demodulator. The best way to explain them is to imagine yourself stuck with a particu­
lar communication problem. Let’s say after you read Chapter 4, you got excited and 
built a source coder—a PCM—which turns your voice signal into a digital bit stream 
(Figure 5.1). You then called up the FCC (Federal Communication Commission) and 
told them you want to use your source coder to send a digital voice message to a 
friend. They respond, “Sure, just be sure you send it over the Family Radio Service 
band, which is 462.5625–462.7125 MHz.” 

You built this! Chapter 5 

PCM 

Channel 

The stuff of 
this chapter 

Also the stuff of 

must lie in the 
462.5625 MHz to 

462.7125 MHz 

Bits 
...10110... 

Bits 
...10110... 

input speech Source Coder Modulator 

Source decoder 
for DCM Demodulator 

You built this! 

FCC says your signal 

range 

Figure 5.1  Introducing the modulator and demodulator 
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You think, “How do I do that?” 

The answer is found in this chapter. A modulator is a device that turns your digital 
bit stream into a signal that is ready to be sent over the communication channel. 
Generally speaking, you’ll transmit your information signal over a channel (for ex­
ample, copper wire, coaxial cable, or as an EM wave through the atmosphere). That 
channel will only allow certain frequencies to make it to the receiver (that is, it will act 
as a band pass filter (BPF)). The modulator’s job is to turn the information bits into a 
waveform that can make it to the receiver. 

I bet you can guess what a demodulator does. It sits at the receiver side and turns 
the incoming waveform created by the modulator back to the original bit stream. 

5.2 Modulators 

There are two types of modulators: baseband modulators and bandpass 
modulators. 

5.2.1  Baseband Modulators 

Baseband modulators are devices that turn your bit stream into a waveform centered 
around 0 Hz (Figure 5.2). You’d use this type when your channel allows frequencies 
around 0 Hz to get safely to the receiver. There are many baseband modulators, each 
one creating its own unique waveform around 0 Hz to send across the channel. 

Bits 
s(t) 

s(t) 

t 
Baseband 
modulator 

...10110... S(f) 

f 

0 Hz 

Figure 5.2 A baseband modulator 
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NRZ Modulators 

One kind of baseband modulator is called an NRZ modulator, short for non-return-to-
zero. As you may have already guessed from the name, with an NRZ modulator the 
waveform created never returns to 0 (zero) volts. Let’s look at a couple of modulators 
from this family. The first-born, which went on to great success in many academic and 
business circles, was the popular NRZ-L. You can see what the NRZ-L modulator does 
to a 0 and to a 1 in Figure 5.3. A 0 stays at +V volts for the bit duration Tb , and a 1 stays 
at –V for a bit duration Tb . Not nearly as popular is the NRZ-M (the black sheep of the 
family, I suspect). Here, we send either +V volts for a bit time Tb , or –V volts for bit 
time Tb . If the bit is a 0, the signal level doesn’t change. If the bit is a 1, the signal level 
changes (e.g., from +V to –V). Figure 5.4 shows you what I mean. 

1 mapped to mapped to 

+V 

-V 

V V 

t t 
Tb 

Tb 

(a) 

0 

in 1 0 1 1 0 0 
+V 

-V 

out t 

(b) 

Figure 5.3 NRZ-L 
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+V 

-V 

V V 

t t 
Tb 

Tb 
Send either or 

1 
mapped to 

change in signal level 

no change in signal level 0 
mapped to 

(a) 

+V 

-V 

out 

in 
1 0 1 1 0 0 

(b) 

Figure 5.4 NRZ-M described 

RZ Modulators 

Leaving the NRZ family, we come to its well-known rivals, the RZs. As you’ll likely 
guess, RZ is short for return-to-zero. These modulators make sure that, for at least 
some of the time, the transmitted signal sits at 0. First is unipolar RZ. Figure 5.5 shows 
you what happens to a 1 and what happens to 0 after it passes through this type of RZ 
modulator. Next, there’s bipolar RZ, another straightforward modulator whose output 
waveform is shown in Figure 5.6. And finally, we’ve got RZ-AMI (alternative mark 
inversion), in which a 1 corresponds to an alternating symbol, and a 0 is sent as 0 
(Figure 5.7). 
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+V 

V V 

t t 

01 

Tb/2 Tb/2 Tb 
(a) 

+V 

0 
out 

in 1 0 1 1 0 0 

(b) 

Figure 5.5 Unipolar RZ 

V V 

+V 
0 

Tb/2 Tb/2 
tt 

Tb/2 Tb/2 

(a) -V 

+V 

0 
out 

in 1 0 1 1 0 0 

(b) 
-V 

Figure 5.6 Bipolar RZ 
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V V


+V 
1 or (alternates) 

Tb/2 Tb/2 
tt 

Tb/2 Tb/2


V -V


+V 
0 

t 
Tb 

(a) 

+V 

0out 

in 1 0 1 1 0 0 

-V 

(b) 

Figure 5.7 RZ-AMI 

Phase-encoded Modulators 

Finally, we come to the modulator family known as the phase-encoded group. Among 
the most popular is the Manchester Coding modulator, in which bit 1 is mapped to a 
waveform that starts at +V and ends up at 0, and where bit 0 becomes the waveform 
starting out at 0 and ending at +V (Figure 5.8). Another popular member of the phase-
encoded group is the Miller Coding modulator. This one believes in choice, so it lets 
bit 0 become one of two waveforms and also lets bit 1 be one of two possible wave­
forms (Figure 5.9). The decision as to which of the two possible waveforms to output 
is based on this simple rule: always make sure that there’s a transition (e.g., from +V 
to –V) between bits (Figure 5.9). 



Getting It from Here to There: Modulators and Demodulators ◆  121 

+V 

V V 

t 
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Figure 5.8 
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Which Modulator to Use? 

Choice can be a wonderful thing, but it can also be over whelming. I’ve just given you 
seven possible choices for your baseband modulator, but if you want to build a commu­
nication system, you’ll have to choose just one of them. As with all things, what you 
choose depends on what you want. There are six things most people want from their 
baseband modulator. Ultimately, you’ll have to decide which modulator is best suited 
for your communication needs. 

(1) No DC component: In some communication systems, ver y low-frequency 
components (that is, frequencies around 0 Hz) don’t make it to the receiver. In 
these cases, we want to use modulators that output waveforms with NO fre­
quency component right at 0 Hz (Figure 5.10). Such modulators are said to have 
no DC component. 

ChannelModulator Receiver 

Frequencies Avoid sending a signal 
with a component at 0Hz around 0Hz 

don't make it 

Figure 5.10  Modulators with no DC components 

It’s easy to tell if a modulator creates a waveform with a component at 0 Hz. Just 
look at what happens if you send a sequence of 0101010101... If the average is 0, then 
there’s no DC component; if the average is not 0, then there is a DC component. For 
example, unipolar RZ has a DC component, NRZ-L does not. 

(2) Self-Clocking: In most communication +V

systems, we want to help the receiver out.


...One way to do this is to make it easy for the 0 ...receiver to create a clock signal with dura- T b T b
tion Tb  (Figure 5.11). The modulator can 
help the receiver create a clock signal by Figure 5.11 
sending a waveform that always transitions Clock signal with duration 
(for example, +V to 0 or +V to –V) once T  wanted at the receiverb

ever y bit duration Tb . Such a modulator 
helps the receiver create a clock and people (and receivers) appreciate it. For 
example, the Manchester code helps with self-clocking, but the NRZ-L doesn’t 
(consider what happens if we send all 1’s—there are no transitions). 

(3) Error Detection: Receivers appreciate it if you can help them detect an error in 
transmission. Modulators can help receivers detect errors by sending a waveform 
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where some waveshapes are	 Receiver 
picks up:not allowed. A picture will help, 

Tbso take a look at Figure 5.12.

There, an RZ-AMI modulator is if 1 sent


used, and the receiver sees the Impossible: must be either
 if 0 sent
waveform shown in Figure 5.12. 
You know from having looked at Figure 5.12  Erroneous recemption in RZ-AMI
the RZ-AMI modulator that the 
waveform in Figure 5.12 could not be the one sent, so the receiver can easily spot 
a transmission error. 

(4) BW compression: In most communication systems, you’d like to send your 
signal with as small a bandwidth as possible. Take a look at Figure 5.13(a). For 
ever y signal sent of duration Tb , the BW is proportional to 1/ Tb . So, consider 
NRZ-L and bipolar-RZ (Figure 5.13(b),(c)). In NRZ-L, the waveform is twice as 
long as in bipolar-RZ, so the bandwidth of NRZ-L is half that of bipolar-RZ. 

s(t)	 S(f) 

s(t)	

s(t) 

S(f) 

S(f) 
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Tb 

-1/T 

-1/Tb 

1/T 

1/Tb 

NRZ-L signal 

(a) 

(b) 

Most of the frequency 
components are in 

this range 

f 

1 
f 

1 
f 

Tb/2 -2/T b 2/Tb 

Bipolar RZ	 Figure 5.13 
(c)	 Bandwidth considerations 
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(5) Inversion Insensitive: Most people don’t like insensitive, but in this case, 
insensitive is a good thing. Sometimes, when you send your waveform across the 
channel, it gets turned upside-down along the way (+V becomes –V and –V 
becomes +V). Inversion insensitive means that even when everything is turned 
upside-down, the receiver can still figure out (correctly) which bit is a 0 and 
which is a 1. For example, NRZ-L is not inversion insensitive, because if things 
get turned upside-down, the waveform for bit 0 becomes the waveform for bit 1, 
and the receiver will make mistakes. 

(6) Noise immunity: This should come as no surprise—people want modulators 
that are relatively immune to noise on the channel. Even when the channel adds 
noise, it should still be easy for the receiver to tell the difference between the 
waveform for bit 0 and the waveform for bit 1. For example, NRZ-L is considered 
more noise immune than unipolar-RZ because, simply put, the waveforms in 
NRZ-L are more “different,” so it takes more added noise to create an error. 

There you have it—the six things people look for in baseband modulators. The 
final choice is based on which of these criteria is most important to you. 

Example 5.1 

Name a baseband modulation scheme which provides both zero DC component 
and low bandwidth. 

Solution: Let’s start by taking a look at NRZ-M. 

In NRZ-M, a 1 is sent as a +V for the bit duration and a 0 is sent as a –V for 
the bit duration. On average, when an equal number of 0’s and 1’s are sent, an 
equal number of +V’s and –V’s are sent. As a result, the average value of the 
signal sent is 0. The NRZ-M has a zero DC component. 

In NRZ-M, the signal sent (when 1 or 0 is input) is constant for the entire 
duration T. As a result, this signal has a small bandwidth as discussed earlier. 

Hence, NRZ-M meets both our requirements: it has no DC component and it 
employs a small bandwidth. 

5.2.2 Bandpass Modulators 

A bandpass modulator takes incoming bits and outputs a waveform centered around 
frequency ω c . This is the modulator you want to use when your communication 
channel will provide safe passage to frequencies around ω c  (that is, when the channel 
lets frequencies around ω c  get to the receiver with little distortion). Basically, these 
modulators are pretty straightforward. The modulator creates the waveform 

s t  t +( )  = Acos(ω θ ) (5.1) 
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where ω  is a frequency at or near ω . The modulator stores the information bits in c
either the amplitude (A), the frequency (ω ), or the phase (θ ). For example, bit 1 may 

t + t +be sent as + Acos(ω θ )  and bit 0 may be sent as − Acos(ω θ ) . In this case the 
information is in the amplitude—the receiver checks to see if it has a +A or –A to 
figure out what bit was sent. 

Now, let’s talk in more detail about how bandpass modulators work. 

ASK 

The first bandpass modulators we’ll look at are called ASK modulators, short for 
amplitude shift-keying modulators. This refers to the modulators that, given the input 
bits, create the waveform s t  t +( )  = Acos(ω θ ) , where the input bits are stuffed in the 
amplitude (A). We’ll start with the simplest of the ASK modulators, called Binar y ASK 
or B-ASK for short. Figure 5.14 shows you what happens when bits 010 arrive at the B­
ASK modulator. As you can see, whenever a bit 0 is input, the modulator pops out 
− Acos(ω t )  for the bit duration. Whenever a bit 1 arrives, the modulator throws out c 
+ Acos(ω t)  for the bit duration. Take a peek at Table 5.1 for a summar y of how B­c 
ASK works. In this table, the times iT to (i+1)T refer to the time duration of the 
incoming bit. 

Input bits 1 00 

Output

wave form


-Acos ωct +Acos ωct -Acos ωct 

0 T  2  T 3T 

Figure 5.14  B-ASK modulator 

O ptu tu w rofeva mnI p tu bi st O ptu tu w rofeva m s( h ht ro and rof m)

0 s =) t ( –A soc ω ,t iT≤ (<t  i T)1+ – soc A ω t · π t( –iT)0 c c 

1 s1( soc A+=)t ω ,t iT≤ (<t  i T)1+ soc A+ ω t · π (t–i )Tc c 

π(t-iT) 

1 
tTable 5.1  BASK iT (i+1)T 
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1 0 1 1Input bits 

Output 
waveform 

Acos ωct 3Acosωct 
T 

Figure 5.15  4-ASK modulator 

Next up: 4-ASK. Here, we let two bits enter the modulator at the same time. 
Rather than simply map bit 0 to one amplitude and bit 1 to another amplitude, we let 
the modulator grab two information bits at a time, so that the modulator input is now 
either 00, 01, 10, or 11. The 4-ASK modulator maps each set of two bits to a waveform 
with a different amplitude. Sometimes pictures are easier, so glance at Figure 5.15. 
Here we see the input bits are 1011. That first bit pair 10 comes into the modulator, 
which pops out the output waveform with amplitude A. Then bit pair 11 jumps into the 
modulator, and the modulator responds by throwing out the output waveform with 
amplitude 3A. Table 5.2 provides a summar y of 4-ASK. On the left, you can see the 
possible two bits that can enter into the modulator. On the right are the output wave­
forms, which are different for each pair of two input bits. The different modulator 
outputs differ only in amplitude. There’s one thing to point out in this table about the 
times iT to (i+1)T, the time duration of the output waveform. The output of a modula­
tor lasts as long as the input to the modulator. So, in 4-ASK, the output of the 
modulator is two bit durations long. You’ll want to notice that each waveform created in 
a 4-ASK modulator lasts twice as long as a waveform created in a B-ASK modulator. 
That’s because each waveform in 4-ASK is representing two bits (each of duration Tb ), 
and so will last a total time of T = 2 Tb ; meanwhile, each waveform in B-ASK is repre­
senting only one bit (of duration Tb ), and so it will last for a time T = Tb . 

stib tupnI  mrofevaw tuptuO mrofevaw tuptuO 
)mrof dnaht rohs( 

00 s0 = )t( – soc A3 ω c Ti,t ≤ T)1+i(<t – soc A3 ω c t · π t( – )Ti 

10 s1 = )t( – soc A ω c Ti,t ≤ T)1+i(<t – soc A ω c t · π t( – )Ti 

01  s2 soc A = )t( ω c Ti,t ≤ T)1+i(<t soc A ω c t · π t( – )Ti 

11  s3 soc A3 = )t( ω c Ti,t ≤ T)1+i(<t soc A3 ω c t · π t( – )Ti 

Table 5.2  4-ASK 
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Some say “size matters” or “bigger is better.” To those who do, we offer you 8­
ASK. A simple extension of the ideas of B-ASK and 4-ASK, in 8-ASK three bits are input 
to the modulator at the same time, and the modulator outputs one of eight possible 
waveforms. Table 5.3 summarizes what’s going on. As you can see here, when bits 000 
enter the modulator, it outputs −7 Acos(ω t) ; if the next 3 bits entering the modulatorc 
are 111, then it outputs +7 Acos(ω t ) . And so on.c 

tuptuO mrof e vaw I b tupn i st tuptuO mrof e vaw )mro f dnaht rohs( 

000  s = )t( – soc A7 ω ,t iT≤ (<t  i T)1+ – soc A7 ω t · π t( –i )T0 c c 

100  s = )t( – soc A5 ω ,t iT≤ (<t  i T)1+ – soc A5 ω t · π t( –i )T1 c c 

010  s = )t( – soc A3 ω ,t iT≤ (<t  i T)1+ – soc A3 ω t · π t( –i )T2 c c 

110  s = )t( – soc A ω ,t iT≤ (<t  i T)1+ – soc A ω t · π t( –i )T3 c c 

001  s4 soc A = )t( ω ,t iT≤ (<t  i T)1+ soc A ω t · π t( –i )Tc c 

101  s5 soc A3 = )t( ω ,t iT≤ (<t  i T)1+ soc A3 ω t · π t( –i )Tc c 

011  s6 soc A5 = )t( ω ,t iT≤ (<t  i T)1+ soc A5 ω t · π t( –i )Tc c 

111  s7 soc A7 = )t( ω ,t iT≤ (<t  i T)1+ soc A7 ω t · π t( –i )Tc c 

Table 5.3  8-ASK 

Of course, things don’t stop with 8-ASK. You could make a 16-ASK modulator, a 
32-ASK modulator, or even a 5092-ASK modulator. The tables just get bigger, but the 
idea stays the same. 

PSK 

The most popular of the bandpass modulators are the PSK modulators, short for phase 
shift-keying modulators. With these, input bits are mapped into output waveforms of 
the form s t  t +( )  = Acos(ω θ ) , and the information bits are stuffed in the phase θ . 
We’ll start with the simplest case first, BPSK (binar y PSK). 

In BPSK, when bit 0 goes into the modulator, the modulator spits out the wave­
o oform Acos(ω t + 0 ) . If bit 1 struts into the modulator, it pops out Acos(ω t +180 ) .c c 

Figure 5.16 shows you what happens when bits 010 stroll into a BPSK modulator. 
Table 5.4 (look at the top part marked BPSK) summarizes the BPSK idea in a neat 
fashion. 



128 ◆  Chapter Five 

0 1 0Input bits 

Output 
wav orme f 

Acos( ω t+0 °) Acos( ω t+180 °) Acos( ωct+0 °)c c 

Figure 5.16  BPSK modulator 

O tuptu w rofeva mI tupn bi st O tuptu w rofeva m naht rohs( d rof m)

KSPB  0 s0 ( soc A = )t( ω 0+t ° ,) iT≤ (<t  i T)1+ (  soc A ω 0+t °) · π t( –i )Tc c 

1 s1 ( soc A = )t( ω 081+t ° ,) iT≤ (<t  i T)1+ (  soc A ω 081+t °) · π t( –i )Tc c 

KSP-4  00  s0 ( soc A = )t( ω 0+t ° ,) iT≤ (<t  i T)1+ (  soc A ω 0+t °) · π t( –i )Tc c 

10  s1 ( soc A = )t( ω 09+t ° ,) iT≤ (<t  i T)1+ (  soc A ω 09+t °) · π t( –i )Tc c 

01  s2 ( soc A = )t( ω 081+t ° ,) iT≤ (<t  i T)1+ (  soc A ω 081+t °) · π t( –i )Tc c 

11  s3 )t( =  (  soc A ω t 072+ ° ,) iT≤ (<t i T)1+ ( soc A ω 072+t °) · π t( –i )Tc c 

KSP-8  000  s0 ( soc A = )t( ω 0+t ° ,) iT≤ (<t i T)1+c 

100  s1 ( soc A = )t( ω 54+t ° ,) iT≤ (<t i T)1+c 

010  s2 ( soc A = )t( ω 09+t ° ,) iT≤ (<t i T)1+c 

110  s3 ( soc A = )t( ω 531+t ° ,) iT≤ (<t i T)1+c 

001  s4 ( soc A = )t( ω 081+t ° ,) iT≤ (<t i T)1+c 

101  s5 ( soc A = )t( ω 522+t ° ,) iT≤ (<t i T)1+c 

011  s6 ( soc A = )t( ω 072+t ° ,) iT≤ (<t i T)1+c 

111  s7 ( soc A = )t( ω 513+t ° ,) iT≤ (<t i T)1+c 

Table 5.4  PSK explained 
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Next up is 4-PSK. Here, the modulator works on two bits at a time. For ever y two 
bits that come into the modulator, the modulator outputs a different waveform. Con­
sider this. The incoming bits are 0011. The modulator first gets hold of the bit pair 00 

oand it maps this into A cos(ω t + 0 ) . Next, it grabs the bit pair 11, mulls it over, and c 
opops out A cos(ω t + 270 ) . You can see all the action in Figure 5.17. Table 5.4 (the c 

part marked 4-PSK) summarizes the workings of 4-PSK. As you can see here, for each 
input bit pair, you get a different waveform output. It’s ver y common for 4-PSK to be 
called by the name quadrature PSK (that’s QPSK for short). 

Next, you’ve got 8-PSK. It’s that “bigger is better” philosophy, again. (Gotta be 
careful with that one—it’ll get you in trouble, as we’ll see later on.) At any rate, in 8­
PSK, three bits are input at the same time, and the modulator thinks it over, and pops 
out one of eight possible waveforms. Take a look at the bottom of Table 5.4. For ever y 
possible set of three incoming bits, a different waveform is output, and these wave­
forms differ from one another in phase. 

Of course, you don’t have to stop there. There’s 16-PSK, 64-PSK, and, hey, why 
not 10192-PSK? 

1 1Input bits 0 0 

Output

waveform


Acos(ω ct+0 ) ° Acos(ω t+270° )c

Figure 5.17  4-PSK modulation 

FSK 

Next stop, the FSK modulators, short for frequency shift-keying modulators. As the name 
suggests, here we stuff the information bits into the frequency. We’ll look at the simplest 
first, which is BFSK (binary FSK). Here, if bit 0 goes into the modulator, it sends out 

∆ ∆A cos((ω + ω )t +θ ) . If bit 1 goes in, then out comes A cos((ω + ω )t + θ ) . The ∆ω0c 0 c 1 
is the frequency offset used to represent a 0, and ∆ω1 is the frequency offset used to repre­
sent a 1. You can see an illustration of the BFSK modulator in action in Figure 5.18. Table 
5.5 provides a summary of this BFSK modulator. 

Next up, 4-FSK. Here, two bits are input to the modulator at the same time, and 
the 4-FSK modulator outputs one of four possible waveforms. Take a look at Table 5.5, 
where you can see all the 4-FSK modulator action. 

Of course, those “bigger-is-better” guys also introduced 8-FSK, 16-FSK, and so on 
... same great idea, just a bigger table to describe it. 
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Input bits 

Output 
wav orm 

0 1 0 

e f 

Figure 5.18  BFSK modulation 

st i btupn I mrofevaw tuptuO mrofevaw tuptuO 
)dnaht rohs( 

KSFB  0 s0 ((soc A = )t( ω c +
∆ω0 Ti,)t) ≤ T)1+i(<t  (( soc A ω c +

∆ω0 )t) · π )Tit( –

1 s1 ((soc A = )t( ω c +
∆ω1 Ti,)t) ≤ T)1+i(<t  (( soc A ω c +

∆ω1 )t) · π )Tit( –

KSF-4  00  s0 ((soc A = )t( ω c +
∆ω0 Ti,)t) ≤ T)1+i(<t  (( soc A ω c +

∆ω0 )t) · π )Tit( –

10  s1 ((soc A = )t( ω c +
∆ω1 Ti,)t) ≤ T)1+i(<t  (( soc A ω c +

∆ω1 )t) · π )Tit( –

01  s2 ((soc A = )t( ω c +
∆ω2 Ti,)t) ≤ T)1+i(<t  (( soc A ω c +

∆ω2 )t) · π )Tit( –

11  s3 ((soc A = )t( ω c +
∆ω3 Ti,)t) ≤ T)1+i(<t  (( soc A ω c +

∆ω3 )t) · π )Tit( –

Table 5.5  FSK modulator 

QAM 

QAM modulators (short for quadrature amplitude modulation modulators) take incom­
ing bits and pop out waveforms of the usual form s t( )  = Acos(ωt + θ ) . What makes 
QAM modulators unique is that the input bits are stored in both the amplitude (A) and 
the phase (θ ) of the output waveform. 

I know this is going to seem rather short, but I’m going to stop talking about 
QAM for now. I’ll provide more details a little later, after I’ve had a chance to tell you 
about orthonormal basis. 
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Example 5.2 

Sketch the output of a 4-ASK and 4-PSK system when the input bits are 001110. 

Solution: Turning to Table 5.2 and 5.4, we see the output when different bits 
are input. Using these tables, with input 00 11 10, we find the output shown in 
Figure E5.1. 

0 0 1  1 1 0 

4 - ASK 

– 3Acos(ωct) 

Acos(ωct + 0°) Acos(ωct + 270°) Acos(ωct + 180°) 

3Acos(ωct) Acos(ωct) 

4 - PSK 

A 

3A 

A 

Figure E5.1  Output of 4-ASK and 4-PSK 

Choosing a Modulation Method 

Bandpass modulation offers a lot of choices. You first have to choose from among 
ASK, PSK, FSK, and QAM. Once you’ve made that choice, you’ve got to pick a num­
ber: will it be, for example, 4-ASK, 8-ASK, or 16-ASK? In this section, I’ll briefly discuss 
the most common criteria for choosing the modulation scheme that’s best for your 
communication system. Let’s start by taking a look at the different modulation types 
(ASK, PSK, FSK). Rather than tell you what to use, I’m going to tell you what to avoid 
using. 

In ASK, all the information is in the amplitude. Let’s say your communication 
channel creates amplitude distortions. In that case, ASK is not the modulation you 
want. That’s because the channel messes up the part of your signal containing the 
information. You don’t want that. 
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In PSK, all the information is in the phase. Let’s say your channel introduces 
phase distortions and you are unable to remove these phase distortions at the receiver. 
In this case, you don’t want to use PSK, because the channel is distorting the part of 
the signal with information. 

Finally, in FSK, you’ve got information in the frequencies. If the channel causes 
significant frequency distortions that you can’t correct, then you don’t want to use 
FSK. FSK has another drawback. It takes up more bandwidth than either PSK or ASK. 
In ASK and PSK, you always send the information signal at the same frequency—it’s 
always sent around ω c (e.g., Table 5.4). But in FSK, you send the signal at a lot of 
different frequencies (e.g., around ω + ∆ω  or ω + ∆ω1 (Table 5.5)). This means you’ve c 0 c
got to have more frequencies available to you if you want to send an FSK signal. 

Let’s say you’ve decided on PSK, but should you use BPSK or 4-PSK or 8-PSK? 
Let’s talk a little about how to decide. To those of you who are thinking “bigger is 
better” (for example, 4-PSK beats BPSK), there is one point that supports your think­
ing. When you use bigger sizes, your signal has a smaller bandwidth. If you use BPSK, 
then each signal that leaves the modulator is of duration T = Tb . If you instead use 4­
PSK, then each signal that leaves your modulator is of duration T=2 Tb . In Figure 5.19, 
you see that the BPSK signal has a null-to-null bandwidth of 2/ Tb , while the 4-PSK 
signal has a null-to-null bandwidth of only 1/ Tb . So, bigger modulation size, smaller 
bandwidth. 

s(t) S(f) 

-1/T b 1/Tb 

1/2T b-1/2T b 

t 

t 

T=Tb 

f 

2/Tb 

(a) 

... 

... 

f 

T=2Tb 

1/Tb 

(b) 

Figure 5.19  Signals of different durations in frequency and time 
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But, for those of you say “Life’s not all about size,” well, you too are correct. 
While being bigger means that you use a smaller bandwidth, it also means that you are 
more vulnerable to channel noise. Consider sending BPSK or 4-PSK. If the channel 
noise is going to cause an error in BPSK, it’s got to make A cos(ω t ) look likec 

oA cos(ω t + 180 ) . Meanwhile, in 4-PSK, if the channel noise is going to cause an 
oerror, it only has to make A cos(ω t ) look like A cos(ω t + 90 ) . It’s easier to make ac c 

signal look like it has a 90-degree phase shift than it is to make it look like it has a 180­
degree phase shift. So it’s easier to make symbol errors at the receiver in 4-PSK than it 
is with BPSK. We’ll talk more about this when we look at demodulators, coming soon 
to a subsection near you. 

5.3 Just-in-Time Math, or How to Make a Modulator Signal 
Look Funny 

When I was taking my Ph.D. comprehensive oral exam, one of my professors asked how 
I would get by with the little math I knew. I explained to him the concept, which he later 
called “just-in-time math.” Basically, this is the idea that when my research required that 
I learn some more math, I’d read the math books then. In keeping with the spirit of “just-
in-time math,” I’m going to share with you some math tools that we’ll need in order to 
understand demodulators (coming up next). The particular math skill you’re going to 
learn is how to represent a signal as a point in space. Take a look at Figure 5.20. In part 
(a) of the figure, we’ve got a point in space. In part (b), you see that we can characterize 
that point as (1,1) by introducing an x-axis and a y-axis. It turns out that you can do the 
same thing with signals. Take a look at part (c) of the figure. There you see a square 
wave. In part (d), you see that we can represent this square wave as a point (1,1), which 
means that the signal is made up of one part of the x-axis signal and one part of the y-axis 
signal. All kinds of detail will follow. 

y 

Figure 5.20 
P P=(1,1)1Representing points and signals 

x 
1 

(a) (b) 

2 

s(t) φ2(t)= 
1/2 1 

s(t)=(1,1)12 

2 
t φ 1(t)=

11 
(c) (d) 

1/2 
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5.3.1  The Idea 

The idea is this. Let’s say you throw me a set of signals {s (t), s 
2
(t), ..., s (t)}, and you

1 M

make sure they have finite energy (and all the signals we look at will be finite energy 
signals). Then I can always represent these signals like this: 

( )  = s ϕ ( )  + s ϕ (t)+...  +s1Nϕ N (t) (5.2)1s t  11  1  t 12  2  

… 

( )  = s ϕ ( )  + s ϕ (t)+...  +sMNϕ N (t) (5.3)Ms t  M1 1  t M 2 2 

ϕ1 t ),...,  ϕ N (t )}  are called an orthonormal basis. The number of ϕ j ( )  ’sHere, { (  t
(N) is always less than or equal to the number of s ti ( ) ’s (M) you sent me. The 
{ (ϕ1 t ),...,  ϕ N (t )}  have two particularly noteworthy properties, both of which have to 
do with integrating. And here they are. If you integrate two different ϕ j ( )  ’s togethert
you get 0, and if you integrate a ϕ j ( )  with itself you get a 1. That is, in a nice conciset
equation form: 

∞ 

t  t dt = 0, i ≠ j (5.4)∫ ϕi ( )ϕ j ( )  
−∞ 

∞ 

∫ ϕ j ( )ϕ j (t dt =1 (5.5)t ) 
−∞ 

Also in Equations (5.2) to (5.3), the coefficients {s
ij
, i = 1, 2, ..., M, j = 1, 2, ..., N} 

are just numbers. These numbers, like s  for example, tell you how much ϕ 2( )t12
there is in s t1( ) . 

Now, Equations (5.2) to (5.3) tell me there is a new way I can express signal 
s t1( ) . In the past, I either had to write out a mathematical equation (for example, 
1( )  = t ) or I had to draw you a picture. Now, I can write s = (s11,..., s ) , and yous t  1 1N 

know that to make s t1( ) —all you do is the math of Equation (5.2). 

This is all ver y nice, but there are two very important things I haven’t yet told 
you. How do we figure out the coefficients, {s

ij
, i = 1, 2, ..., M, j = 1, 2, ..., N}, and 

how do we figure out the signals { (ϕ1 t ),...,  ϕ N (t )}? 

The coefficents, from s11  to sMN , are a piece of cake. All you have to do is this 
integration: 

∞ 

sij = ∫ s  t  t dt  (5.6)( )ϕ j ( )i 
−∞ 
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The orthonormal set { (ϕ1 t ),...,ϕ N (t )}  is a little bit more work, but it’s still quite 
easy. You simply follow the mathematical algorithm that I’m going to give you next, 
called the Gram-Schmidt orthogonalization procedure (big words, simple algorithm): 

(1) To get ϕ1( )t , just compute 

s tt 1ϕ ( ) = ( )  
1
 E1


∞ 

where 9 = ∫ / ( )  ( )  / + #+ + . 
∞ − 

(2) To get ϕ 2( )t , compute 

ϕ ( ) = θ ( )tt 2 
2
 Eθ 2


∞ 

t 2( ) − s ϕ ( ) and 9θ J = ∫θ ( )  ( )  where θ ( ) = s  t  t  + θ #+ + .2 21 1 J J 

∞ − 

(3) To get ϕ 3( )t , just compute 

ϕ ( ) = θ ( )tt 3 
3
 Eθ 3


∞ 

where θ ( ) = s t  31  1  t 32 2 t + θ #+ + .t 3( ) − s ϕ ( ) − s ϕ ( ) and 9θ O = ∫θ ( )  ( )  3 O O 

∞ − 

( ) , and if you get ϕ k t(4) Keep going, up to ϕ M t ( ) = 0  along the way, just throw 
that one out, because you don’t need it. 

Well, now you know this rather neat trick. If someone gives you a set of signals, 
you can figure out the set of signals { (ϕ1 t),...,ϕ N (t)} , and you can figure out a set of 
coefficients (values) {s

ij
, i = 1, 2, ..., M, j = 1, 2, ..., N}, and you can write their set of 

signals in terms of your ϕ j ( ) ’s and sij ’s. Moreover, you can represent their signal as t
a vector, taking their s t1( ) and writing it as s = ( ,..., s ) .1 s11 1N 



L 

+ L 
L 

9 

+ 

/ ( )  
J 

L + 

/ ( )  
L 

L + 

J 

L + 

+ J 
J 

9 

+ 
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Example 5.3 

Determine the orthonormal basis for the two signals shown in Figure E5.2. 

Solution: We’ll use the orthogonalization procedure, which tells us 

ϕ ( )= / ( )  
(E5.1) 

= 
∞ J 

L 

(E5.2)
 ∫ /L ( )  

 #+ +  
 ∞ −  

= 
  J 

L 

 ∫ M #+  (E5.3)
  K  

= / ( )  
(E5.4) 

s1 (t) s2 (t) 

2 
1 

t t 
21 

Figure E5.2 Two signals 

This first element of the orthonormal basis is drawn in Figure E5.3. Return­
ing to the orthogonalization procedure to get the second element, we discover 

ϕ ( )= θ ( )  
(E5.5)

θJ 



J L L 

9 

L 

K


J L


9 

+ + 

L 
J 

9 

+ + 
+ J 

+ J 
J 

9 

+ 

J + 
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( )− ts t  s ϕ1 ( )2 21= 
Eθ2 

(E5.6) 

∞ 

/ (+)− ∫ /J ( )  ( )  ++ ϕ #++ ⋅ϕ ( )  
= ∞− (E5.7) 

θJ 

/ ( )− ∫L #+ ⋅ϕ ( )  
= (E5.8) 

θJ 

ϕ ( )= / ( )−ϕ ( )  
(E5.9)

θJ 

ϕ1 (t) 

t 

1 

1 

Figure E5.3 The ϕϕϕϕϕ1(t) 

To help get a better feeling of what the numerator looks like, you’ll find it 
drawn in Figure E5.4. Using this, we’ll finish solving for the second orthonormal 
basis element like this: 

ϕ ( )= θ ( )  
(E5.10)

θJ 

θ ( )= 
∞ J 

J
L 

(E5.11) + ∫θ ( )  #+ 
 

J 
 ∞− 
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t
ϕ2 ( ) = 

θ2 ( )t 
2 

1 dt 

 

1
2 

(E5.12) ∫
 1  

= θ2 ( )t (E5.13) 

The two elements of the orthonormal basis are drawn in Figure E5.5. 

θ2 (t) = s2 (t) – ϕ1 (t) 

t 

1 

1 2 

Figure E5.4 A plot of θ2(t) = s2(t) – ϕ1(t) 

t 

1 

ϕ1 (t) 

1 
t 

1 

ϕ2 (t) 

1 2 

Figure E5.5 The orthonormal basis 

5.3.2 Representing Modulated Signals 

Next we’ll see some simple examples of what was discussed above. If you totally 
understood what I said in the last section, then this part will be a piece of cake. If you 
don’t fully understand what I said earlier, then this section will help you nail it. 

First, we’ll look at the signals that leave the PSK modulator, then look at the 
signals that leave the ASK modulator, and finally look at the signals that leave the 
QAM modulator. I’m going to tell you about the orthonormal basis (the ϕ j ( ) ’s) andt
the coefficients ( sij ’s) corresponding to these signals. Before I do this, let me empha­
size that the reason I’m doing this has nothing to do with a great love for orthonormal 
basis, but it actually turns out to be important when we look at demodulators. 
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BPSK 

Let’s look at the signals that leave the BPSK modulator. You can see these two signals, 
called s t 1( ) , at the top of Table 5.4. 0( ) and s t 


The Orthonormal Basis: Given the two-signal set { ( ),  ( 
s t  s t  )} , we’ll start with 0 1 
the orthonormal basis { (ϕ1 t ),...,ϕ N (t )} for these two signals. First, you know you’ve 
been given two signals { ( ),  (s t  s t  )} , so the orthonormal basis {ϕ1(t ),...,ϕ N (t )} will be0 1 
made up of less than or equal to two ϕ j ( ) ’s.t

You can go ahead and do that algorithm I gave you in Section 5.3.1, and you’ll get 
the orthonormal basis (actually, it’s good practice, so take a moment and try it here). 
OK, here’s what you’ll find (if you didn’t, check your math). The {ϕ 

1
(t), ..., ϕ (t)} for 

N

ϕ
BPSK is just the one-element set 

1 t )} , where ϕ ( )= J hiS( )⋅π (+ − >+). That’s right, there’s only one element inω +{ ( L 

 the orthonormal basis. This means you can write the PSK output signals as 

t( ) = s ϕ ( )  (5.7)0s t  01  1  

t( ) = s ϕ ( )  (5.8)1s t  11  1  

s
The Coefficients: Next, do the integral I showed you (Equation (5.6)) to get the 

01  and s11  (Go ahead. Again, it’s good practice). Here’s what you should get: for 
0( ) , the s = A T

2 and for s t1( ) , the s = − A T
2 .s t 01 11 

A Plot: One nice thing about an orthonormal basis is that it lets you represent 
the BPSK signals as a point in space. Once you’ve got the { (ϕ1 t ),...,ϕ N (t )} (in this 
case the { (ϕ1 t )}), and you’ve got the coefficients (in this case the s01 = A T

2 and 
A T

2 
tells you how much ϕ

), then you can plot s t 1( ) . Figure 5.21 shows you what I mean. It 0( ) and s ts11 = −  
t  you need to get s t t  you need to get1( ) 0( ) , and how many ϕ1( )

1( ) . And that’s it.s t

represents s (t) represents s (t) 1 0 

x x φ √ ω π1 t) (t-iT)c •(t)= (2/T) cos ( 

S =-A√(T/2) S =A  √(T/2) 11 01 

Figure 5.21 Plot of BPSK signals s0(t) and s1(t) 



1 

140 ◆  Chapter Five 

4-PSK 

Here we’ll be asking and answering the following question: “How many ϕ j ( ) ’s (or­t
thonormal basis functions) does it take to represent the 4-PSK signals (and what are 
those ϕ j ( ) ’s)?”  The answer is really quite easy. t

The Orthonormal Basis: If we’re going to represent the 4-PSK signals on an 
orthonormal basis, we’ve first got to remember what they look like. Take a quick peek 
at Table 5.4 where you can see the 4-PSK signals {s t  s t  s t  s t  )} once again.( ), ( ), ( ), (0 1 2 3
Now, look at Table 5.6. There, I’ve written the 4-PSK signals as a sum of a sine and a 
cosine (using a simple trig identity). I’ve done this because in fact it suggests a particu­
lar orthonormal basis, as I’ll show you next. 

If you carr y out the algorithm of Section 5.3.1, you’ll get an orthonormal basis 
ϕ1 t ),...,ϕ N (t )} , and you’d find the basis made up of a cosine and sine. Specifically, 

you’d find the orthonormal basis is { (t ),ϕ (t )} where 
{ (

ϕ1 2 

tϕ ( ) = 2
T cos(ω t) ⋅π (t  iT ) and ϕ (t ) = −  2

T sin(ω t ) ⋅π (t  iT ) .−c − 1 c 

Now, this is intuitively pleasing, because, looking at Table 5.6, it’s obvious that 4­
PSK signals are made up of a sum of sines and cosines, and that’s what the 
orthonormal basis tells us: you can write 4-PSK signals as a sum of sines and cosines. 

tupn I 
st i b smro f e vaw tuptuO 

4 KSP­ 00 s0 )t( =  (  soc A ω c 0+t °)π )Tit( – = (soc A ω c )t · π )Ti-t(  + 0 

10 s1 )t( =  (  soc A ω c +t 09 °) · π )Tit( – = 0 (ni– s A ω c )t · π )Ti-t( 

01 s2 )t( =  (  soc A ω c +t 081 °) · π )Tit( – = – (soc A ω c )t · π )Ti-t( + 0 

11 s3 )t( =  (  soc A ω c +t 072 °) · π )Tit( – = 0 + (nis A ω c )t · π )Ti-t( 

Table 5.6  4-PSK written as a sum of sines and cosines 
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The Coefficients: Now that you have the orthonormal basis { (t ),ϕ (t)} , let’sϕ1 2 
s s02 ) , then ( , 
move ahead and take a look at the values ( ,  s s12 ) , and so on. By doing
01 11 

the simple integration that gives these values (Equation (5.6)), we quickly and easily 
find 

( ,s s02 ) = ( A T
2 ,0)01 

( ,s s12 ) = (0, A T
2 )11 

( ,  (s s22 ) = − A T
2 ,0)21 

( ,s s32 ) = (0,− A T
2 )31 

The Plot: Now we can represent 4-PSK signals on a plot, which will tell us how 
t and how much ϕ 2( )much ϕ1( ) t  must be added together to create the QPSK signal. 

Take a look at Figure 5.22 and see 4-PSK in a whole new light. 

φ2(t) 

φ 1 (t) 

x 

x 

x 

x 

0 

(s , s01 √

(0,-A√ (t)3 

(0,A√ 1 

(-A√ 2 

represents s (t) 

)=(A 02 (T/2),0) 

(T/2)) represents s 

(T/2)) represents s (t) 

(T/2),0) represents s (t) 

Figure 5.22 Plot of 4-PSK signals {s0(t), s1(t), s2(t), s3(t)} 
using orthonormal basis 

8-PSK 

“Must we?” I think as I write this title. “I mean we’ve already done BPSK and 
4-PSK, do we really have to do 8-PSK?” I think about how nice a short book would feel 
as I write late, late into the night. But, don’t worry, after 4-PSK, this one’s a breeze, so 
we’ll just do it and it will be over in no time. 
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Table 5.7 shows you the 8-PSK signals once again, {s t s t  ),..., s t  )} , and( ), ( (0 1 
adds a little to it by showing how each 8-PSK signal can be written as a sum of sines 
and cosines. You’ve really got two ways to find the { (t ),...,  ϕ N (t )}  (orthonormal ϕ1 
basis functions) for 8-PSK. First off, you could jump ahead and use the algorithm of 
Subsection 5.3.1. Or, if you’ve got a good gut, you could use your intuition, using the 
fact that ever y 8-PSK signal can be written as a sum of sines and cosines. Either way, 
you can come to this result: the 8-PSK signals {s t s t  ),..., s t  )} can be represented ( ), ( (0 1 7 
on the same orthonormal basis as 4-PSK, namely { (t ),ϕ (t)}  where ϕ1 2 
ϕ ( )  = − 1 t T c −t T cos(ω t ) ⋅π (t  iT ) and ϕ ( )  = −  2 sin(ω t ) ⋅π (t  iT ) .c 

All that’s left are the values ( ,  s s12 ) , and so on up to ( ,s s02 ) , then ( ,  s s72 ) . You 01 11 71 
can get this by using the integral of Equation (5.6), or if you prefer, you can again use 
that old gut of yours, turn on the intuition, and looking at Table 5.7, see how much 

t and how much ϕ 2( ) ( )  (this gives you ( ,ofϕ1( ) t  you need to create s t s si2 ) ). Eitheri i1 
way, you’ll come to the same values, which you’ll find in Table 5.8. 

I b tupn i st tuptuO mro f e vaw s

KSP­8 000 s 0 )t( =  (soc A ω c ·°)0+t π )T i –t( = (soc A ω c ·)t π )T i-t(  + 0 

100 s 1 )t( =  (soc A ω c ·°)54+t π )T i –t( = (soc ω c ·)t π )T i-t(
A 

– (n i s ω c ·)t π )T i-t( 
A 

010 s 2 )t( =  (soc A ω c ·°)09+t π )T i –t( = 0  (n i s– A ω c ·)t π )T i –t( 

1 10 s 3 )t( =  (soc A ω c ·°)531+t π )T i –t( = (soc ω c ·)t π )T i –t(  A- – (n i s ω c ·)t π )T i –t( 
A 

001 s 4 )t( =  (soc A ω c ·°)081+t π )T i –t( = – (soc A ω c ·)t π )T i –t(  + 0 

101 s 5 )t( =  (soc A ω c ·°)522+t π )T i –t( = (soc ω c ·)t π )T i –t( A- + (n i s ω c ·)t π )T i-t( 
A 

01 1 s 6 )t( =  (soc A ω c ·°)072+t π )T i –t( = 0  (n i sA+ ω c ·)t π )T i –t( 

1 1 1 s 7 )t( =  (soc A ω c ·°)513+t π )T i –t( = (soc ω c ·)t π )T i-t( A + A (n i s ω c ·)t π )T i –t( 

2 2 

2 2 

2 2 

2 2 

Table 5.7  8-PSK written as a sum of sines and cosines 
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tuptuO tuptuO mrof evaw detnese rpe r no 
mrof evaw mronohtro al sab is 

8-PSK s )t( s = (s 10 , s02) = (A 2 ]T 0 )
0 0 

s )t( s 1 = (s 1 1 , s 21 ) = 
 A

2
T 

] 
A

2
T 



 
1 

 

2A T )s )t( s = (s 12 , s 22 ) = (0,
2 2 

 −A T  A T   s )t( s = (s 13 , s32) = 

 2 

, 2  

s )t( s = (s 14 , s 24 ) = (− 

3 3 

A 2 ]
T 0 )4 4 

 −A T  −A T   
s )t( s = (s 15 , s 25 ) = 


 2 

, 5 5 2  

s )t( s = (s 16 , s62) = (0, − 2A T )6 6 

 A T −A T  
s )t( s = (s71, s ) = 


 2

, 7 7 72 2  

Table 5.8 8-PSK written as a sum of sines and cosines 

ASK 

Good news. ASK is easy. Look at Tables 5.1 to 5.3. There, you’ll see the ASK output 
signals, and you’ll quickly notice one thing: all ASK output signals are simply 
cos(ω t) ⋅π (t iT ) terms; the only difference is the amplitudes.−c

To get the orthonormal basis for either BASK, 4-ASK, or 8-ASK, you can perform 
the algorithm of Section 5.3.1 using the ASK symbols { (  M (s t ),..., s t)} , or, you can0 
simply realize this: If I consider the one-element orthonormal basis { (t )} , whereϕ1


t T −
ϕ ( )  = 2 cos(ω t ) ⋅π (t iT ) , then I can represent all ASK signals as a constantc 
times this ϕ1( ) —so this fellow ser ves as my orthonormal basis.t

Next, we turn our attention to computing the coefficients s01 , then s11 , and so on 
up to s 1 . You can perform the integral of Equation (5.6), or you can use your intu-M
ition, looking at ϕ1( ) ( )  , and you can figure out how many ϕ1( )t , then looking at s t t ’si
you need to get s t( )  . Either way, you’ll get the values shown in Table 5.9.i

1 
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tuptuO tuptuO mro f e vaw detnese rpe r no 
mro f e vaw mronoht ro al sab is 

KSAB s 0 )t( 

s 1 )t( 

KSA-4 s 0 )t( 

s 1 )t( 

s 2 )t( 

s 3 )t( 

KSA-8 s 0 )t( 

s 1 )t( 

s 2 )t( 

s 3 )t( 

s 4 )t( 

s 5 )t( 

s 6 )t( 

s 7 )t( 

Ts = s = –A 20 10 

Ts = s = A 21 1 1 

s = s = –3A0 10 

Ts 1 = s 1 1 = –A 2 

Ts 2 = s 12 = A 2 

Ts 3 = s 13 = 3A 2 

s = s = –7A0 10 

s = s = –5A1 1 1 

s = s = –3A2 12 

Ts 3 = s 13 = –A 2 

T 
2s = s = A4 14 

T 
2s = s = 3A5 15 

Ts = s = 5A 26 16 

Ts = s = 7A 27 17 

2
T 

2
T 

2
T 

2
T 

Table 5.9  ASK signals represented on orthonormal basis {φ1(t)} 
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QAM 

The last one! In QAM, the information bits are stuffed into both the phase (θ ) and the 
amplitude (A) of the cosine waveform. That is, a typical output waveform for QAM 
looks like this: 

j ( )  = Aj cos(ω t +θ j ) ⋅π (t  iT ) (5.9)s t  −c 

Now, applying a little bit of trig, we can rewrite this as 

s (t) = Aj cos(θ )cos(ω t) ⋅ π(t – iT) – A sin(θ )sin(ω t) ⋅ π(t – iT) (5.10)j j c j j c 

You can plainly see that the s tj ( )  can be expressed as a sum of one sine and one 
cosine term. So it just makes sense that the orthonormal basis consists of a cosine and 
a sine term. Specifically, one orthonormal basis made up of a sine and a cosine term is 

ϕ1 tthis one: { (t ),ϕ (t)}  where ϕ ( )  = 2 
T cos(ω t ) ⋅π (t  iT ) and−2 1 c 

ϕ ( )  = −  2 
T sin(ω t ) ⋅π(t  iT ) . This will work wonderfully as the orthonormal basis t −1 c 

for QAM. Using this orthonormal basis, we can write the QAM output signal s tj ( )  
above as: 

j ( )  = sj1 1  ts t  ϕ (t ) + sj2ϕ ( )  (5.11)2 

Now, you can use the integral in Equation (5.6) to get the values sj1  and sj2 , or 
you can figure these out by comparing the above s t

s 

j ( )  equations (namely (5.10) and 
(5.11)) and seeing what these sj1  and sj2  must be. Either way, you’ll come up with 

j1 = Aj 
T

2 sinθ j , which means the QAM signal can be written 
according to 

cosθ j and s j2 = Aj 
T

2 

s t  j1,j ( )  ↔ s j = (s  s j2 ) = ( Aj 
T

2 cos  θ j , Aj 
T

2 sin  θ j ) (5.12) 

One nice way to look at this s tj ( )  is to plot it as a point in space, which I do in 
Figure 5.23. 

φ2(t) 

(Aj√(T/2) cos θj , A j√(T/2) sin θ j) 

represents s (t) j 

φ 1(t) 

Figure 5.23 A plot of a single QAM point 
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Before we head off into the brave φ2(t) 

new world of demodulators, one last 
thing about QAM. A typical 16-QAM x 

3Ax √(T/2) 
x x 

constellation looks like Figure 5.24.

There, now you’ve had a chance to see

all 16 output signals, and I didn’t have to A√(T/2)


x x
make a table of all 16 input bit pairs 

x x 

A√(T/2) 3A√(T/2) (0000, 0001, …, 1111) and all the corre- -3A√(T/2) -A √(T/2) 
φ1(t)

sponding output signals. This 
orthonormal basis stuff sure does come x x x x 

in handy sometimes. 
-A√(T/2) 

5.4 Bring it Home, Baby, or x x x x 

Demodulators 
-3A√(T/2) 

Figure 5.24 Plot of 4-PSK signalsWhat I want to do here is build a de-
{s0(t), s1(t),... s15(t)} for 16-QAM modulator for you, and teach you how to 

build it for yourself. But, first, we’ll want 
to define the demodulator. What is it? The demodulator is a device that gets the signal 
sent across the channel, and turns it back into bits. 

5.4.1 What Demodulators Do

Let’s start with a picture. Take a look at Figure 5.25. There, you can see how the signal 
( )  leaves the modulator, packing its bags and taking a journey across the channel. s tm

Finally, after its long journey, it arrives at the receiver side. Just like all us travellers, 
after a long trip our hair is a mess and our stomachs may be turned upside-down. Well, 
the signal s t( )  is no different than we are—it looks a little shaken up. Specifically, by m
the time the signal arrives at the receiver, it’s no longer its old s t( ) self, but rather it’sm
become 

( ( ) + η tr t) = s t  ( )  (5.13)m 

where η( ) ( )  headed along from t is the noise added by the channel as our signal s tm
transmitter to receiver. 

The demodulator doesn’t know s t( )  was sent across the channel. All it knows is m
that, for example, a 4-PSK signal from the set {s t s t s t s t  )} was sent. Its job( ), ( ), ( ), (0 1 2 3
is to do the best it can to figure out which s t( )  was sent across the channel, given m

( ) . Once it figures this out, it uses a look-up table to find out what information bits 
are stuffed in the signal it thinks was sent. It then outputs those bits. 
r t

The key to building a good demodulator is to minimize the effects of noise and 
give the highest probability of guessing the correct sent signal.  This will make sure 
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Channel 

bits 
b 

output 
bits 

b 

sm(t) 

r(t) 

sModulator 

Demodulator 

information 

Figure 5.25 The modulator and demodulator 

that the bits that leave the demodulator (receiver side) are as close as possible to the 
bits that come into the modulator (transmitter side). 

5.4.2 The Channel and Its Noise 

We’ve modeled the channel as an unpleasant fellow that takes the signal you sent, tires 
it out, and ultimately adds a noise to it. This is not the only channel model, and chan­
nels can do a lot of other things (some rather ugly things), but this noise model is one 
of the most common ones. To characterize the noise term η t , the most common( )
noise model, and the one we’ll work with, is called AWGN, shorthand for additive 
white gaussian noise. Each word has a meaning: 

Additive: tells us the noise signal η t is added to the sent signal s t( ) ( ) ;m

Gaussian: tells us, first, that the noise signal η t  is a random process. Second, if ( )
you consider a sample of that noise η t , it is a random variable with a gaussian( )
distribution. That is, in the concise language of math, 

1p  t  )| ) = p(η ) = exp( −ηi 
2

) ; (5.14)=(η( t ti i 
2πσ 2 2σ n 

2 

n 

White: tells us that the noise η t , a random process, has the autocorrelation ( )
function: 

2Rη τ n ( )( ) = σ ∂ τ . 
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What this function means in words is that samples of η t  are completely independent ( )
from one another. 

Noise: this little word means that η t  is an unwanted signal introduced by the ( )
channel. 

Putting it all together, we know that η t  is added to the sent signal, it’s a random( )
process, and we know its first- and second-order statistics ( p( ) ( ) ).η  and Rη τi

5.4.3 Building a Demodulator, Part I—the Receiver Front End 

I can describe the demodulator in two parts, each part having an important role to play 
in detecting the received signal. The first part is called the receiver front end. 

What it does 

The signal 

( ( ) + η tr t) = s  t  ( )  (5.15)m 

jumps into the receiver front end. The receiver front end says to itself: “It would be 
easier for the rest of the receiver to work with numbers (or a vector of numbers), 

( ) .” So it decides to represent r trather than this continuous time function r t ( ) as a 
vector. One way to do this is to find an orthonormal basis for r t ( ) can( ) , such that r t
be written as 

( ) = rϕ (t) + r ϕ ( )  ...  tr t  1 1  2 2  t +  +  r ϕ N ( )  (5.16)N 

In this case, r t( )  can be represented as r = (r ,...,r ) . The rest of the receiver 1 N 
could then work with this vector, which is easier than working with r t( ) . And that’s 
what it does … the receiver front end turns r t( ) into r , a term easier for the rest of 
the receiver to work with. The details follow. 

An orthonormal basis for r(t) 

The first thing the receiver front end is asked to figure out is the orthonormal basis for 
r t) = s  t  ( )  ϕ1 t ),...,ϕ N (t )} in Equation (5.16)( ( ) + η t . In other words, what will that { (m 

( ) : it is made up of two signals, s t ( )look like? Let’s take a look at r t ( ) and η t , som
we’ll take a look at the orthonormal basis for each of these signals, and we’ll use that 
to get an orthonormal basis for r t( ) . 

Let’s start with s t ( ) is a 4-PSK( ) . We’ll pick one out of a hat and say that s tm m

basis for 2
T

signal. That means, from what we saw in the previous section, that the orthonormal 
s t ϕ1 2 t −( ) is { (t ),ϕ (t)}  where ϕ ( ) = cos(ω t ) ⋅π (t  iT ) andm 1 c 

ϕ (t ) = −  2
T −sin(ω t ) ⋅π (t  iT ) .c 2 
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Next, let’s look at η t , a random process described as AWGN. How do you get ( )
the orthonormal basis { ( ( )ϕ1 t ),...,ϕ N (t )}  for a random process like η t ? Answering 
that will just introduce a lot of math and stats, which ultimately will lead us to a simple 
point—so I’m just going to tell you the simple point. For a random process, specifically 
one described as AWGN, any infinitely long orthonormal basis will do. So we’ll choose 
this one. I pick {ϕ (t ),ϕ (t ),ϕ (t ),ϕ (t),...}  where { (t ),ϕ (t )}  forms the orthonor-ϕ11 2 3 4 2 
mal basis for s t 1 t T c −( ) (i.e., ϕ ( ) = 2 cos(ω t ) ⋅π (t  iT ) andm

tϕ ( ) = −  2
T sin(ω t) ⋅π (t  iT ) ), and ϕ (t ),ϕ (t ),...  are some other functions which 2 c − 3 4 

when combined with { (t ),ϕ (t)}  form an infinitely long orthonormal basis (we’llϕ1 2 
see later that it won’t matter what they are). 

( )  and an orthonormal basis for η t ,Now we have an orthonormal basis for s t ( )m
so you say: what’s the orthonormal basis for r t) = s  t  ( ) ? Well, η t  can be( ( ) + η t ( )m 

( )  can be represented on represented on {ϕ (t ),ϕ (t ),ϕ (t ),ϕ (t),...} and s t1 2 3 4 m
{ (t ),ϕ (t)} . It follows that r tϕ1 2 ( )  can be represented on {ϕ (t ),ϕ (t ),ϕ (t ),ϕ (t),...}1 2 3 4 
since: this basis is adequate to represent s t( ) (using the first two elements) andm
adequate to represent η t  (using all the elements), so it’s got to be enough to repre­( ) 


( ) = s  t  ) + η t
sent r t  ( ( ) .m 

Representing r(t) as a vector using the orthonormal basis 

( ) , let’s figure out the r = (r r r  Now that we’ve got the orthonormal basis for r t , , ...)1 2 3  
in r t ) = rϕ ( ) + r ϕ ( ) + rϕ ( )  ...( 1 1  t 2 2 t 3 3 t + 

This r  is the vector that the receiver front end wants to figure out and hand off to 
the rest of the receiver. First, r1 . To get it, all we have to do is use the integral equation 
(5.6). The next four lines show the integral computation to get that r1 : 

H = ∫ ( )  ( )  #+ (5.17)+ H ϕ + 

+ ( ))ϕ (+ )#+ (5.18)H = ∫ (/ ( )+η + 

+ ϕ (+ )#+ + ∫ ( )  ( )  #+ (5.19)H = ∫ / ( )  ϕ η + 

r1 = s + η1m1 

( ) along ϕ1( )Here, sm1 is just the coefficient of s t t . (In Figure 5.22, it’s the x-m
axis part of the 4-PSK signal.) What about the η1 ? Using some statistical arguments 
which I won’t present, η1  turns out to be a Gaussian random variable with 0 mean and 
variance σ 2 . How nice.n 

Next, let’s take a look at r2 . Again, we can figure this one out by using the inte­
gral equation (5.6). The next line shows you what happens when you do it: 



O O 

O ' O 

+ O ' O O 

+ 

+ 

2 
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r  sm2 + η2 (5.20)= 

( ) along ϕ 2( )This time, sm2  is the coefficient of s t t . (In Figure 5.22, it’s the y-m
axis component.) Here, η2  is a Gaussian random variable with 0 mean and variance 
σ 2 . Not only that, but after some statistical wrangling (about 12 lines long), you cann 
show that η2  and η1  are statistically independent. That is, knowing η1  tells you 
nothing about η2 , and knowing η2  tells you zippo about η1 . 

On to r3 . Pulling equation (5.6) out of our pocket and popping it down on paper 
leads us to 

H = ∫ ( )  ( )  + H ϕ #+ + (5.21) 

+ ( ))ϕ ( #+ + (5.22)H = ∫ (/ ( )+η + ) 

H = ∫ / (+ )ϕ ( )  ( )  )#+ + + ∫ ϕ η ( #+ + (5.23) 

H = ∫ (/ ϕ ( )+ / ϕ ( ))ϕ ( )  ϕ η #+ + (5.24)+ + #+ + + ∫ ( )  ( )  O 'L L ' J J O O 

+ ϕ #+ + + /'J ∫ϕ ( )  ( )  ϕ η #+ + (5.25)H = /'L ∫ϕ ( )  ( )  + ϕ #+ + +∫ ( )  ( )  O L O J O O 

t and ϕ 3( )Now because ϕ1( ) t  are parts of an orthonormal basis, then by defini­
tion (or by looking back up at Equation (5.4)), we see that their integral is 0; and that 

t and ϕ 3( )also happens for ϕ 2( ) t . This realization leads us to: 

=r  sm1 ⋅ 0 + s ⋅ 0 + η `(5.26)3 m2 3 

r3 = η3 (5.27) 

Now, η3  is (using a few lines of statistical analysis) a Gaussian random variable, 
independent of η1  and independent of η2 . 

Similarly, we can compute r4 , r5 , and so on, and we’ll find 

r4 = η4 (5.28) 

r5 = η5 (5.29) 

And so on. Here the η4 , η5 , yada yada yada, are all Gaussian random variables 
independent of all the other ηi  terms. 

The receiver front end looks at this and says: “You know, I really only want to give 
the rest of the receiver information that’s useful for detection. Certainly I’ll give it r1 
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and r2 , because these contain an information term. But there really is no point in 
passing on r3 , r4 , and so on, because they just contain noise terms, and these noise 
terms are independent of all the other noises. And I don’t see any use in passing noise 
to the rest of the receiver.” 

And so, wisely, the receiver front end only provides the rest of the receiver with 
the parts of r  that contain a signal term. In the case of 4-PSK, that is r1  and r2 . In the 
case of ASK or BPSK, its easy to show that it would simply be r1 . 

Building the Receiver Front End 

Now that the receiver front end has decided to give the rest of the receiver the part of 
r  containing the signal terms, this section is all about building a receiver front end. 
There are many different ways to build a receiver front end, so that it can do its job and 
do it well. The receiver front end presented here is called the correlator receiver front 
end. Glance at Figure 5.26, and you’ll see what the correlator receiver front end looks 
like. 

Looking at Figure 5.26, you see that the incoming signal is r(t). It’s well known 
that if you want r1 , all you have to do is the integral H = ∫ ( )  ( )  #+ . In Figure 5.26 , + H ϕ + 

you can see that the receiver front end does this on its top branch. If the receiver front 
end also wants to provide rN  (and it will if there’s a signal component in rN ), then it 
just computes the integral H = ∫ ( )  ( )  #+ . And that’s just what the bottom branch of+ H ϕ + 

Figure 5.26 does. And, voila—the receiver front end.  Life is good. 

φ 1(t) 

r(t) 

x 

x 

. 

. 

. 

. 

. 

. 

∫ 

∫ 

(i+1)T 

(i+1)T 

iT 

iT 
r1 

rN 

φN(t) 

Figure 5.26 Correlator receiver front end 
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Example 5.4 

Describe the receiver front end in a BPSK receiver. 

Solution: Turning back the pages to section 5.3.2, you’ll find that there we 
discovered the orthonormal basis for a BPSK signal is simply 

ϕ ( )= 8 hiSω + ⋅π (+ − >8 ) (E5.14) 

Now, all that the receiver front end does is map the received signal r(t) to its 
value along the orthonormal basis, r1. For the BPSK case, two ways of doing this 
are shown in Figure E5.6. 

r (t) 
x 

r1 r (t) 
x 

r1 

(i+1)T 

iT 
∫ 

∞ 

–∞ 
∫ 

( )  ( )1 
2 cos ct t TTϕ = ω − 2 cos ctT ωt i⋅ π  

(a) (b) 

Figure E5.6 The receiver front end for BPSK—two implementations 

5.4.4 The Rest of the Demodulator, Part II—The Decision Makers 

So the receiver front end has done its part—it’s turned r(t) into r . Now it’s up to 
the rest of the demodulator, which we call the decision device. 

What It Does 

The decision device receives r , which, for 4-PSK, corresponds to 

r = ( ,r ) (5.30)r1 2  

r  sm1 + η1 (5.31)= 1 

r  sm2 + η2 (5.32)= 2 

In shorthand notation, we can write 

r sm + η . (5.33)= 

The decision device thinks to itself: “All I see is ( ,r r1 2 ) , which is a noisy version 
of ( ,  ( ) , or correspondingly, which vector ( ,s s 2 ) . I wonder which signal s t s sm2 )m1 m m m1 

s s
(and there are four possibilities in 4-PSK), was sent to me by the modulator?” The 

m2 ) (i.e., which s tdecision device spends its time figuring out which ( ,  ( ) ) them1 m
modulator tried to send. 
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Once the decision device figures φ2(t) 

s s 2 ) , or which s tout which ( ,  ( ) ism1 m m
x (s , s ) 11 12sent, its job is nearly done. It does one 

more simple thing: it looks to see which 
(r , r ) 1 2bits the modulator stores in that s t( ) ,m

and it outputs those bits, and, then, the 
demodulator has completed its job. 

x x φ 1(t)
For example, take a look at Figure (s , s22) (s01, s02)21

5.27. There, the x’s mark four possible 
s sm2 ) values that may be output by( ,m1 

a 4-PSK modulator. The o marks 
1 2 ) , the received values that come ( ,r r

x (s , s32)31into the decision device from the 
receiver front end. The decision device 
has the job of figuring out which Figure 5.27 Possible 4-PSK symbols 

s sm2 ) was sent, given that ( ,( ,  r r ) and the received vectorm1 1 2  
was received. Once the decision device 
decides which ( ,s sm2 )  was sent, it then goes to Table 5.4. There, it can tell which m1 

s s 2 ) . For example, if the demodulator decides ( ,bits are stored in the ( ,  s s ) wasm1 m 11 12
sent (corresponding to sending s t( ) ), then it knows the bits sent were 01. This is the 1
demodulator output. 

How It Works 

“Well”, says the decision device, “I understand what it is I’m going to do, but I’m 
unclear about exactly how to do it. Specifically, how do I figure out which s = ( ,m1m s sm2 ) 
was sent when I look and see r = ( ,rr1 2 ) ?” In this section, we’ll tell the decision device 
exactly how to do that. To come up with our answer, we’re going to do some statistical 
work, which will ultimately lead us to an intuitively pleasing answer. 

First off, we want to make sure the decision device makes as few errors as 
possible. We’ll start to build the decision device by requiring that it minimize the 

ε , the probability of it making an error. Another way to say this is: we’ll require 
that, given the decision device sees r , it must choose the si that is most likely to have 
occurred. Statistically, this is stated simply as 

P( )

s� i = argmax p( |r) (5.34)si 
si 

Let me explain to you what that math/stats equation means. It states two things: 

(1) the s� i = argmax  part: this is shorthand for the words “Have the decision 
si 

device choose to output s� i , the value of si that maximizes ...”; 
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(2) the p ( ) part: this is shorthand for the words “how likely si  is to occur, given 

I see r .” 

Put together, this equation says “Have the decision device choose the output s� i , 
the value of si  that is most likely to occur, given I see r .” 

For the next little bit, we’re going to manipulate Equation (5.34) until we get it 
into a nice and easy form. First, we apply Bayes’ Rule, which lets us rewrite the equa­
tion according to 

i )( |  s p(s ) 
( )  (5.35)is� i = argmax p r

p rsi 

Next, look at that term on the bottom (in the denominator). It’s not a function of 
si . That term will be the same regardless of s . It plays no role in choosing which si i 

i ) imakes p r( |  s p(s ) 
( )  biggest. It can be dropped. So we drop it, and end up with p r  

r i )s� i = argmax p( |  s p(s ) . (5.36)i

si


Now, the term p r( |  s )  is the probability of having a particular r given an si wasi 
sent. Now r = si +η , so if r = (10,10) and si = (6,7) , then η  = r – si = (10,10)–(6,7) = 
(4,3). In other words, the probability of having r given si  is the probability that η = r – s ,i
or mathematically, p r( |  s )  = p(η = r – s ). Stuffing this equality in our equation leads to i i

− i )s� i = argmax p(η = r s p(s ) (5.37)i

si


Let’s look at that noise term η . It corresponds to η = (η ,..., ηN ) , and, for conve­1 
nience, we’ll say here that it consists of two terms, that is, η = ( ,η  η  ) . In Section1 2 
5.4.3, we talked about how η1  and η2  are independent of one another. This means that 
we can write p( )  = p(η ) p(η ) . Throwing this into our equation leads to η 1 2 

s� i = argmax p(η = r  s  p  (η = r  s  p(s ) (5.38)1 1 − i1) 2 2 − i2 ) i

si


Next, we know that the noise terms are Gaussian, with 0 mean, which means we
1 −ηi 

2 

write p(ηi ) = exp( ) . Plugging in this information leads us to a new

2πσ 2 2σ n 

2


n 

equation, namely 

2 − 2  
exp  − 1

2 
−
σn 

2 

 

2πσ 2 
exp  − 2

2σ 2 
( )  (5.39)ŝ i = arg max 1  (r si1 )  

1  (r  si2 )  p s i 
si 2πσ 2 

 
n  nn 
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Now, here comes a neat statement that you may not have heard before. If you’re 
looking for the value of x that maximizes f(x), then you can alternatively look for the 
value of x that maximizes ln f(x). Applying this idea to our equation gets us to 

− 2 − 2   1  (r si1 )  1  (r  si2 )  p ( )ŝ i = argmax ln 

 

2πσ 2 
exp 


 − 1

2σn 
2  2πσ 2 

exp  − 2

2σ 2  
s i  s i  n n  n  

(5.40) 

− 2 − 2 
1 2ŝ i = argmax ln 


 1 

 − 
(r si1 ) + 

 1 
 − 

(r  si2 ) + ln  p ( )s i  s i  2πσ 2  2σn 
2  2πσ 2  2σn 

2  
n n 

(5.41) 
To get this equation, I just used two simple rules of math: (1) lnxy = lnx + lny and 

(2) ln exp x = x. Next, I can remove the terms that are not a function of s , since they’lli
be the same for each and ever y s , and won’t help me in deciding which si makes thei
term biggest. Doing that gets me to 

)2 )2 
1 − i1 − (r  s  + ln[ p s )] (5.42)s� i = argmax − (r s  2 − i2 (


si 2σ 2 2σ 2 i

n n 

Then, I’ll multiply though by the constant 2σ 2  which leaves me withn

)2 )2 2s� i = argmax − (r s  − (r  s  + 2σ ln[  p(s )] (5.43)1 − i1 2 − i2 n i

si


Now, here’s a little mathematical trick: I can choose the value that maximizes x, 
or equivalently, I can choose the value that minimizes –x. Using this, I can rewrite the 
equation according to 

)2 )2 2s� i = argmin(r s  + (r  s  − 2σ ln[  p(s )] (5.44)1 − i1 2 − i2 n i

si


That is, in shorthand notation 

2s� i = argmin |r s  | −2σ ln[  p(s )] (5.45)− i 
2 

n i

si


And that, at last (phew), is the final equation for how the decision device goes 
about picking s . Now, in the very common case where all the s ’s are equally likely— i i 
that is, p( s ) is a constant—then this equation can be rewritten as i

s� i = argmin |r s  |2 (5.46)− i

si
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And here lies this really nice and easy interpretation. This equation simply says to 
tell the decision device to choose the s� i closest to r . Take a look at Figure 5.27. All 
Equation (5.46) says in this case is choose s1 , because it’s closest to r . Now isn’t that 
an intuitively pleasing result? All that math, and it all comes down to: “Given r , choose 
the s� i that’s closest on the plot.” Isn’t it nice when math and common sense meet? 
Wait a minute ... isn’t that just engineering? 

5.4.5 How to Build It 

Let’s look at what we now know. First, we know that the decision device receives r , 
and tries to figure out which sm was sent. It makes its decision by choosing the sm 
based on equation (5.45) (or (5.46) if all symbols are equally likely—that is, p( s )m
equals a constant). Once the decision device decides on which sm was sent, it then 
figures out which bits the modulator stored in that sm  (or, equivalently, that s t( )  ),m
and it outputs those bits. That’s pretty much everything there is to know about deci­
sion devices. The only thing left to talk about is how to build them. 

The Correlator Receiver 

Figure 5.28 shows the complete demodulator, beginning with the receiver front end 
and following with the decision device. When we build the demodulator according to 
Figure 5.28, people call it the correlator receiver. The receiver front end part is the 
part before (to the left of) the dotted line and looks just like the implementation I drew 
earlier in Figure 5.26. As we’d expect, it takes the r(t) and hands out the r . To the 
right of the dotted line in the figure, I’ve drawn the decision device. It works like this: 

(1) processor: the processor receives r = (r r ,..., r ) . It outputs M values, where ,1 2  N 
M is the number of possible s t( )  signals (for example, for 4-PSK, it outputs fourm
values). Specifically, for each s t( )  , the processor outputs | r – s | 2 .m m

(2) adders: there are M adders, one for each output from the processor. The jth 
adder receives the processor output | r – s j | 2 , and adds to it – 2σ 2 ln p( s j ). So, ton
state the obvious, the jth adder’s output is |r s j |

2 −2σ ln[  p(s j )] .− 2 
n 

(3) choose min: the “choose min” device receives M inputs,

|r s j |

2 −2σ ln[  p(s j )] for j = 1, 2, ..., M. It outputs one value, the s j , which has
− 2 
n 

the smallest value of |r s j |
2 −2σ ln[  p(s j )] .− 2 

n 
2Combined, these three pieces carr y out s� i = argmin |r  s  | −2σ ln[  p(s )] .− i 

2 
n i 

si 
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table (bits). . 

r sm 
2-

-2σn
2ln p(s )M 

decision device 

Figure 5.28 Correlator Receiver 

Example 5.5 

Describe the decision device in a BPSK receiver (assuming each transmitted 
signal is equally likely). 

Solution: Turning back the pages to Example 5.4, you’ll see we already 
decided that the receiver front end is as shown on the left of Figure E5.7. On the 
right side of Figure E5.7 is the decision device. As we just said in the text, it 
consists of 

1. The processor, which in this case inputs r = r1, and outputs M=2 branches. 
The top branch puts out the value of |r1–s |2 and the bottom branch outputs01

2the value |r –s | .1 11

2. The adders (or lack of them!): with all symbols being equally likely, 
p(s0)=p(s1). Hence, there is no need for the adders here since all they would 
do is add the same number to each branch. 

The “choose min” device: The choose min device outputs the BPSK symbol 
closest to the received signal. 



+ + G L 

158 ◆  Chapter Five 

ϕ ( )= J 
8 

hiS( )π ω (+ −8 ) 
p 
r 
o 
c 
e 
s 
s 
o 
r 

2 

x 
∞ 

–∞ 
∫ 

r1 – s01 

r1r (t) 

2r1 – s11 

Choose 
min. 

receiver front end decision device 

Figure E5.7 The receiver for deleting BPSK symbols 

The Matched Filter Receiver—Version 1 

Engineers, being creative types, came up with a second way to build the demodulator, 
shown in Figure 5.29. Let’s look at this figure, and compare it to our original figure, 
Figure 5.28. First, look to the right of the dotted line (at the decision device): on the 
right of the dotted line, you can see that the two figures are identical, meaning that the 
two decision devices are identical. Next, glance to the left of the dotted line (the 
receiver front end): the two look quite different. But I’m going to show that in fact 
these two receiver front ends do exactly the same thing, by demonstrating that the 
input and output of the receiver front end in the new figure (Figure 5.29) are identical 
to the input and output of the receiver front end in the original receiver figure (Figure 
5.28). 

This means a filter

with impulse response h(t)=φ1(T-t) -2σn

2ln p(s 1)
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∧ ∧
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Figure 5.29 The matched filter receiver—Version 1 
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Both the receiver front ends receive as input r(t), so, they’ve obviously got the 
same input. Now, if I can show you that the value A in Figure 5.29 is equal to r1 , and 
the value B in Figure 5.29 is equal to rN, then these receiver front ends will also have 
the same output, and so they do exactly the same thing. 

It’s all math, showing that A is equal to r1 , and here we go: 

= ( )  *  r t  ) |   where  h t  ) = ϕ (T  t  ) (5.47)A h t  ( ( −t T  1= 

A = ∫ τ (h ( ) ⋅ r t  −τ ) dt (5.48)t T= 

(. = ∫ϕ (8 −τ )⋅ + H −τ )#+ (5.49) 

A = ϕ1 (T − τ ⋅  r T  − τ) dt (5.50)∫ ) ( 

. = ∫ϕ ( )⋅ I H )#I (5.51) 

A r1 (5.52)= 

Following the exact same set of mathematical arguments, we can show that 
B = rN. So there you have it, the receiver front end of Figure 5.29 has the same input 
and output as the receiver front end in Figure 5.28, and so they do the exact same 
thing. We can replace one by the other, and still build the equivalent receiver. And 
that’s really all Figure 5.29 says. 

The Matched Filter Receiver —Version 2 

Yep, they made another one, and it’s somewhat popular, so we need to look at it. It’s 
going to take some math to figure out how to build this receiver, and a bit of math to 
explain the actual implementation, but hang in there. 

This next receiver implementation starts out by rewriting the way a decision 
device makes its decisions. When last we looked, we saw decision devices making 
decisions according to 

2s� i = argmin |r  s  | −2σ ln[  p s )] (5.53)− i 
2 

n ( i 
si 

Now, we’re going to write out the first term, which leads us to 

2 2 (s� i = argmin(r1 − si1)2 + (r2 − si2 ) − 2σ ln[  p s )] (5.54)n i 
si 

)2( ,assuming r = r r  ) . Next, we’re going to evaluate (r s  = (r1 − si1)(r s ) , which1 2  1 − i1 1 − i1 
this time leads us to (after a couple of lines of math) 



⋅ ⋅ 

⋅ ⋅ 

+ + + + + 
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s� i = argmin | |2 −2(r  s  + r  si2 )+| s | −2σ ln[  p s )] (5.55)⋅ ⋅ 2 2 (r 1 i1 2 i n i 
si 

Now, the |r| term is the same for all si , and as a result it won’t affect our decision 
on which si  to select. So we can drop it, which leads us to 

s� i = argmin − 2(r  s  + r  si2 )+| s | −2σ ln[  p s )] (5.56)⋅ ⋅ 2 2 (1 i1 2 i n i 
si 

Now, for a math trick we’ve used once before: Choosing the value minimizing –x 
is the same as choosing the value maximizing x. Using this little trick, let’s write: 

s� i = argmax  2(r  s  + r  si2 ) + (| s | −2σ ln[ p s )]) (5.57)⋅ ⋅ 2 2 (1 i1 2 i n i 
si 

s� i = argmax (r  s  + r  si2 ) + 1
2

(| si|
2 −2σ ln[ p s )]) (5.58)⋅ ⋅ 2 (1 i1 2 n i 

si 

s� i = argmax (r  si1 + r  si2 ) + c (5.59)1 2 i 
si 

⋅s� i = argmax r si + ci (5.60) 
si 

2 (where ci = 1
2

(| si |
2 −2σ ln[ p s )]) .n i 

Now we’ve got a new equation describing how the decision device, given r , 
makes a choice on which si  to output. I’ll show you how engineers build a demodula­
tor that uses a decision device based on Equation (5.60). There’s really just one 
popular way to do it, shown in Figure 5.30. The value marked A in Figure 5.30 is 
actually equal to r s1 , and the value marked B is actually equal to r s . With just a M 
little looking and a little thinking, I believe it becomes apparent that the demodulator of 
Figure 5.30 carries out the optimization of Equation (5.60). 

Let’s do some math that shows that indeed A is equal to r s1 :⋅ 
∞ 

j = ∫ r t s  t dt  (5.61)( )  ( )  1 
−∞ 

∞ 

. = ∫ (Hϕ ( )+ H ϕ ( )+ H ϕ ( )+…)⋅ (/ ϕ ( )+ / ϕ ( ))#+ (5.62)L L J J O O LL L LJ J 

∞ − 

. = ( / H LL ∫ϕ ( )  ( )  + ϕ #+ + )++ ϕ #+ + + / H LJ ∫ϕ ( )  ( )  L L L J J J 

( / H LJ ∫ϕ ( )  ( )  #+ + +…)+ ϕ #+ + + / H JL ∫ϕ (+)ϕ ( )  (5.63) 
L L J J L J 
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Figure 5.30 The matched filter receiver—Version 2 

A = (r s ⋅1 + r s ⋅1) + (r s ⋅ 0 + r s21  ⋅ 0+... ) (5.64)1 11  2  12  1 12  2  

A = ⋅r s  1 (5.65) 

In an identical manner, we can show that B is r s⋅ . And that’s it. Take this, add M 
some looking, throw in some thinking, and, voila, Figure 5.30 does indeed implement 
the decision shown in Equation (5.60). 

5.5 How Good Is It Anyway (Performance Measures) 

Of course, anytime you build something, you want to be able to tell people how good it 
is. “It’s great!” you might declare. “A four-star performance!” While these descriptions 
work well for movie reviewers, they’re rarely sufficient for number-oriented engineers. 
“Exactly how wonderful is it?” those engineers will ask. “Give me a number.” You 
might think to reply “A perfect 10!”, but they’ll want a more descriptive number. This 
section is all about providing such a number. 

5.5.1  A Performance Measure 

First, we’ve got to decide what number we want to give those engineers, and what that 
number will describe. Let’s come up with a way to numerically measure the perfor­
mance of a modulator-demodulator pair. The best way is to ask a simple question: 
What’s the most important thing in a modulator-demodulator pair? Well, the most 
important thing is that the demodulator correctly decide what the modulator sent. So, 
if you want to tell someone how your modulator-demodulator pair is doing, you’ll want 
to tell them P( ) , the probability that the demodulator makes an error when it’sε
deciding what signal was sent. The smaller the P( ) , the better your demodulator. ε
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5.5.2 Evaluation of P( )ε  for Simple Cases 

What I’ll do here is teach by example. We’ll take a look at BPSK and study the P( )ε 
for a BPSK modulator–demodulator pair. 

The BPSK Modulator Remembered 

Take a look at Table 5.4, which summarizes the BPSK modulator.  There, you can see 
that a 0 is mapped to s0(t) and a 1 mapped to s1(t). Also, peeking back at Section 5.3.2, 
you can uncover that the orthonormal basis for BPSK is simply the one signal {ϕ1( ) },t 
and s0(t) and s1(t) are easily represented on ϕ1( ) by s and s11. Figure 5.21 shows you t 01
a visual plot of the two BPSK symbols, plotted on their basis {ϕ1( ) }.t 

The BPSK Demodulator: A Summary 

As we saw in our earlier work, a demodulator consists of two parts: (1) a receiver front 
end, and (2) a decision device. 

The receiver front end takes r(t) and maps it to r . The details of how it works 
and how you build it are all in Section 5.4. If you just follow that, you’ll find in the case 
of BPSK that the receiver front end is just like the picture in Figure 5.31 (look to the 
left of the dotted line). 

-2σn
2 ln p(s01) 

P 
r 
o 
c 
e 
s 
s 
o 
r 

r s 2-1 01  

φ 1(t) 

x ∫ 
r 1 

r s 2-1 11  

Choose 
min. 

+ 

+ 

∧ s0i Look 
up 

table 

∧
b i 

(bits)
r(t) 

-2σn
2 ln p(s 11) 

decision devicereceiver front end 

Figure 5.31 BPSK demodulator 
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The decision device takes r and figures out which symbol s  was sent. How itm
works and how to build it are once again the topics of Section 5.4, and if you look that 
over and apply it to BPSK, you’ll discover that the decision device looks just as it’s 
drawn on the right side of Figure 5.31. Also, you’ll find that the equation that the 
decision device is carr ying out is simply 

)2 2s� i = argmin (r s − 2σ ln[ p s )] (5.66)1 − i1 n ( i1 
si 

We’ll assume equally likely symbols (that is, p( s 1 ) = constant), which means thati
the decision device is carr ying out the equation 

)2s� i = argmin (r s (5.67)1 − i1 
si 

That is, the decision device carries out the simple rule: output the symbol which 
is closest to the received r1 . 

Evaluating the P(εεεεε) 

Now that we’ve recapped the modulator and the demodulator for BPSK, we’re ready to 
move full-steam ahead and find the P( )ε . In BPSK, there are two ways an error can 
happen: The demodulator thinks you sent s t 0( )  , or the1( )  , but in fact you sent s t
demodulator thinks you sent s t 1( )  . Writing this statistically,0( )  , but in fact you sent s t
we have 

P(ε) = P(output s1(t)|send s0(t)) ⋅ P(send s0(t)) + P(output s0(t)|send s1(t)) ⋅ P(send s1(t)) 
(5.68) 

We can simplify this equation by making a simple realization: the symbols are 
equally likely, which means the P(sent s t 0( )  ) = 0.5. Plugging this1( )  ) = P(sent s t
information into our P( )ε  equation leads us to 

P(ε) = 0.5 · [P(output s1(t)|send s0(t)) + P(output s0(t)|send s1(t))] (5.69) 

Now, let’s see if we can figure out another value for P (output s t 1( )  ).0( )  | sent s t
Take a look at Figure 5.32(a). There, we sent s t1( )  , which corresponds to sending s11 . 
The decision device picks up r = s11 + η . This decision device makes a decision1 1 
according to the rule “Choose the symbol which the received r1  is closest to.” 

Look at what happens in Figure 5.32(b), where η1  is bigger than 2 
TA . In that

 case, the r1  will be closest to s01 , and the demodulator will decide s  (that is,01

s t0( )  ). If η1  is bigger than A T
2 , the demodulator will make an error. So, the


0( )  | sent s t 
P (output s t 1( )  ) is equal to p (η >  A T ) .1 2 
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x 

x 

x 

x 

sent this 

sent this 

S =–A11 √

11 √

01 √

S =A01 √

φ 1 (t) 

φ 1(t) 

1 1 

(a) 

(T/2) 

S =-A (T/2) 

S =A  (T/2) 

(T/2) 

r =S  +n  11  

r =S  +n11  11  

when

n > 
1 A√(T/2) 

Figure 5.32 
(b) Sent and received signals in BPSK 

Similarly, we can show that P (output s t 0( ) ) is equal to1( ) |sent s t
p (η >  A T

2 ) . Putting this information to good use, we plug it into our P( )ε 
equation, which leads us to 

T Tε  = 0.5[ p(η > A ) + p(η < −  A ) ] (5.70)P( ) 1 2 1 2 

The good news here is that the equation just gets simpler. One of the neat proper­
ties of a Gaussian random variable is that, if x is a Gaussian random variable, p (x>A) and 
p (x<–A) are the same. Putting this information to use in the P( )ε  equation leads us to 

Tε 1 ) (5.71)P( )= p(η > A 
2 

∞ JL η  
!( )= ∫ X`k 


− 

Jσ ( 

J 



#ηε 
8 Jπσ (  (5.72) 
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Now, we just make a simple substitution, namely to let u = η1
σ . Substituting this

n 

into the integration brings us to 

L  
ε!( )= 

∞

∫ 
8 

Jπ 
X`k 


− I 

J

J 


 #I 

. (5.73) 
σ ( 

P( ) = Q(
A T 

2 ) (5.74)ε 
σ n 

where the Q(x) function is just shorthand notation for the integral 

L   
  : ( )= 

∞

∫ 
Jπ 

X`k 

− I 

J

J 


 #I . 

I want to rewrite this equation in more common notation, so that if you happen to 
open another telecommunications book, you can easily follow their notation. First, 
there’s E : it’s easy to show that the energy of the BPSK signal, E , is given bys s

#+ + = .9/ = ∫ / ( )  . Additionally, it’s common to express the noise variance of η1 

as σ = N / 2 . Plugging this into our P( )ε  equation gives us the end result: n o 

2Es )P( )ε = Q( (5.75)
No 

The Q ( ) function can be looked up in a table.
P( 

10–1 

10–2 

10–3 

10–4 

) So, if you give me the energy of the BPSK signal (or its A and T 

variance, then I’ll give you the P
from which I can get its energy), and you give me the noise 

do is give me the ratio of the energy of the BPSK signal to 
( )ε . Actually, all you’ve got to 

the channel noise variance (that is, just give me 
Es ), which is often called the signal-to-noise
No ratio or SNR, and I’ll give you the P( )ε . 

Take a look at Figure 5.33. There you can 
see a plot of P( )ε  for BPSK that was generated 

s 0E /N (dB) using Equation (5.75). What you’ll notice is that, 
as the signal-to-noise ratio gets higher, the 

Figure 5.33 BPSK performance P( )ε  decreases rapidly—ver y rapidly. 
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5.5.3 Some Well-known P(εεεεε)’s 

While we could calculate all the P( ) ’s for all the modulation schemes in a mannerε
similar to that in the last section, we simply don’t have to. People have done a lot of it 
for us. I’m going to give you some commonly used P( ) ’s for you to use as you please.ε
Just look at the last table of the chapter, Table 5.10. 

M udo l ta i no mro f r eP ecna

P ( )  
 2E π  

sKSP -M ∑ ≈ 2 Q  sin  
 N0 M  

KSF -B P( )   
=∑ Q 

Es  

 N0 

KSF -M P( )≈∑ (M − 1 ) Q 
 Es  
 N0 

Table 5.10 Modulation schemes and performance 

5.6 What We Just Did 

Another one bites the dust. Let’s take a moment to recap and summarize what we just 
went through. Modulators take the incoming bits and map them to a waveform ready 
to be sent over the channel. You’ve got baseband modulators (NRZ, RZ, and some 
others), and you’ve got bandpass modulators (ASK, PSK, FSK, and QAM). 

These modulator output signals fly across the channel. The channel introduces an 
unwanted element called a noise. 

The demodulator at the receiver end then picks up this noisy version of what was 
sent. It has the task of figuring out what the modulator sent from this noisy signal. It 
does this by breaking its job up into two tasks: a receiver front end, which maps the 
received signal r(t) into r , and a decision device, which, looking intensely at r , 
selects which signal was most likely to have been sent. 

Finally, we discussed how to go about telling someone how a modulator–demodu-
lator pair performs. We decided on the measure called probability of error, or P( )ε , 
and I explained how you could calculate it. 

And so here we are, at another crossroads, another end. But, as you’ll learn when you 
turn your attention to Chapter 6—every ending is just a new beginning. See you there. 
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Problems


1. Discuss the benefits and drawbacks of Manchester coding in terms of (1) DC 
component; (2) self-clocking; (3) bandwidth usage; (4) inversion insensitivity; and 
(5) noise immunity. 

2. If you want a baseband modulation scheme that is 

(1) insensitive to amplitude inversions on the transmission line, and 

(2) insensitive to the 60-Hz spike (consider this a DC spike) in the EM

spectrum caused by devices driven by AC current, what would be a good

choice for the baseband modulator?


3. A 16-level quantizer has output levels –7,–6,...,6,7,8. It is followed by a symbol 
to bit mapper that maps –7 to 0000, –6 to 0001, and so on. The output of the bit 
mapper feeds an 8-PSK modulator. 

(a) Assume that the output of the sampler (that feeds the quantizer) is 6.32 
(amplitude of first sample), 4.16 (amplitude of second sample), and 1.12 
(amplitude of third sample). Draw the output of the modulator. 

(b) If the sampling rate is 10,000 Hz, what is the symbol rate out of the

modulator?


4. Given that the input bits are 000110101001,  provide the output of a BPSK, 
QPSK, 8-PSK and 16-PSK modulator. 

5. Given the four signals in Figure Q5.1,  find an orthonormal basis for these signals. 

s0(t) s1(t) 

2 2 

1 

t t 
1 2 3 0 1 2 30 

Figure Q5.1 
Four signals 

s2(t) s3(t) 

2 
0 

3 
1 

–1 
1 

1 
0 1 2 3 

t t 

–1 

–2 
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6. One of two equally likely signals is sent across a channel. The channel adds an 
additive white gaussian noise (AWGN). The signal sent is either 

( )  ( )0s t  = p t  (Q5.1) 

or 

( )  (1s t  = p t  )2− (Q5.2) 

where p(t) corresponds to the signal drawn in Figure Q5.2. 

(a) Provide an equation for the received signal r(t). 

(b) Determine an orthonormal basis for the transmitted signals. 

(c) Sketch the receiver front end. 

(d) Provide an equation for the output of the receiver front end, r. 

(e) Sketch the decision device for the receiver. 

(f) Sketch a block diagram for the entire optimal demodulator. 

p(t) 

2 
t 

0 

p(t) = 2 

1 

Figure Q5.2 p(t) 

7. You are asked to build a demodulator for 8-ASK. You are told all signals are 
equally likely. 

(a) Provide a receiver front end for the demodulator. 

(b) Sketch the decision device. 

(c) Sketch the complete demodulator. 

8. An FSK modulator sends one of the following signals 

( )1s t  = ( ) ( )cos , 1cA  t  iT  t  i  T≤  <  +ω (Q5.3) 

( )2s t  = (cos cA tω ),t  iT∆+ ω t≤  <  ( )1i T+ (Q5.4) 

( )3s t  = (cos cA tω ) ( )2 , 1t  iT  t  i∆+  ≤  <  +ω T (Q5.5) 
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s t  ∆ ), ≤  <  4 ( ) = Acos (ω t + 3 ωt  iT  t  (i +1)T (Q5.6)c 

where 

∆ 2πω = 
T (Q5.7) 

(a) Find an orthonormal basis for these four signals; 

(b) Build an optimal demodulator when the FSK signal is received in the 
presence of AWGN. 

9. Consider a binary FSK modulator which transmits one of the following signals: 

s t  0t0 ( ) = Acos (ω  + θ  0 ) (Q5.8) 

s t  1t1 ( ) = Acos (ω  + θ  1 ) (Q5.9) 

where 

θ θ = I(>0LH' H=(#L' J=KI- >( [ J ] K π ] (Q5.10) 

(a) Find an equation relating ω and ω1 such that the two transmitted signals0
are orthogonal, i.e., such that 

(i  T  +1)


∫ 0 ( )  ( ) 
s t s t dt = 0 (Q5.11)1 
iT 

For the remainder of this problem, assume that the two transmitted signals are 
orthogonal. 

(b) Find an orthonormal basis for the two transmitted signals. 

(c) Plot the two transmitted signals on the orthonormal basis. 

(d) Assume that the signals out of a binar y FSK modulator are equally likely, 
and that they are sent over an AWGN channel. Draw a block diagram of the 
optimal demodulator. 

(e) Express, on the plot you drew in (c), the operation of the decision device in 
the demodulator. 

10. Evaluate the probability of error when 

• a modulator sends one of two equally likely symbols; 

• the modulator outputs are either 0 or 1, as shown in Figure Q5.3; 

• the channel adds AWGN 

• an optimal demodulator is used. 
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s0=0
X X 

s1=1 
ϕ1(t) 

Figure Q5.3 
Modulator outputs on orthonormal basis 

11. 	Determine the output symbol rate of the 8-PSK modulator given 

•	 An analog input enters a sampler – the analog input has a maximum 
frequency of 12 kHz. 

•	 The signal is sampled at the Nyquist rate. 

•	 The sampled signal enters into an 8-level quantizer. 

•	 The quantizer output passes through a symbol-to-bit mapper. 

•	 The bits from the mapper enter into the 8-PSK modulator. 



6 
Chapter 

Channel Coding and Decoding:

Part 1–Block Coding and Decoding 

We’re now near the midpoint of the book. This chapter is all about what’s known as 
channel coding, and its partner, channel decoding. We’ll start with a brief 

overview of the meaning of the words channel coding and channel decoding. 

First, in Figure 6.1 you’ll see a device called the channel coder, located right in 
the middle of the source encoder and the modulator. (It is this device that performs 
channel coding.) If you look at the input to the channel coder, you’ll see that it is a 
stream of bits, and its output is also a stream of bits. This leads us to an intriguing 
question. Why would somebody introduce a device that takes in a stream of bits and 
puts out a stream of bits? To answer this question, we need to look a little more closely 
at what the channel coder does: It takes each set of k incoming bits and maps it into a 
set of n outgoing bits, where n is greater than k. The extra n – k bits introduced into 
the bit stream by the channel coder are added so that we can detect transmission 
errors and/or remove transmission errors at the receiver side. 

TRANSMITTER 

encoder 
Channel 
coder 

bitsbits
x(t) 

speech signal 

... 
sent 

channel 

s(t) 
Source Modulator 

for example, for example,
for example, across 

1 0 1 1 0 1 1 1 0 

Figure 6.1  Introducing the channel coder 
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Now take a look at Figure 6.2, where you’ll see a picture of an updated receiver 
side. This receiver includes, between the demodulator and the source decoder, a 
device known as the channel decoder. The channel decoder undoes the operation of 
the channel coder. That is, the channel decoder maps each set of incoming n bits into 
its best guess on the original set of k bits. Specifically, what it does is use the extra 
n – k bits introduced at the channel coder to correct/detect any errors that might have 
occurred during transmission. 

There are two types of channel coding: block coding and convolutional coding. 
This chapter will focus on block coding, as we will save convolutional coding for 
Chapter 7. 

RECEIVER 

decoder 
Channel 
decoder 

bits bits 

... 

r(t) = s(t) + n(t) 

(t) 
speech 
x 

Source Demodulator 

for example, for example, 

received 
from channel 

1 0 1 1 1 0 1 0 1 signal 

Figure 6.2 Introducing the channel decoder 

6.1  Simple Block Coding 

6.1.1  The Single Parity Check Bit Coder 

In this simple example of channel coding, called the single parity check bit coder, each 
set of k incoming bits is mapped to k + 1 outgoing bits. Take a look at Figure 6.3, which 
clearly explains what is going on. The additional bit is added to ensure that, if you 
added all the bits together, you would get a total of 0 (using modulo 2 addition: 0+0 = 0, 
1+0 = 1, 0+1 = 1, 1+1 = 0). 

Channel coding where one bit is added to create a 
total sum of 0 is called even parity. You can 

instead add one more bit so that the total Channel 
coder 

1 0 1 1 0 1 0 when adding all bits is 1, and this is 
called odd parity. You can decide 
which you like better, but to keep add 1 bit 

to ensure sum of things simple in this book, unless 
all bits is 0 otherwise stated, you can assume 

Figure 6.3 Single parity check bit coder I’m always referring to even parity. 
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Now we know what the channel coder does. What about the channel decoder? 
Using the example of Figure 6.3, the decoder takes the four bits received and adds 
them all together (modulo 2). If the total of the sum is 0, then it reports that there was 
no error detected. If the total happens to be 1, then it reports that in fact an error has 
occurred. 

For example, look at Figure 6.4. In Figure 6.4(a) you see the four transmitted bits. 
In Figure 6.4(b) you see the four received bits. Adding the received bits together 
modulo 2 you get a total of 1. Seeing that 1 tells you an error is detected. 

Let’s see whether or not we can detect two errors with single parity check bits. In 
Figure 6.4(c), you see the received bits, with two errors in them. Adding all the re­
ceived bits together, you get a sum of 0, which indicates “No error.” But we know 
there are in fact two errors. So, single parity check bits can’t be used to detect the case 
of two bit errors occurring. Actually, if you take a few minutes and look at different 
scenarios carefully, you’ll find that a single parity check bit can always detect an odd 
number of errors, but can never detect an even number of errors. 

1 0 1 0 sum is 0 

(a) 

1 1 1 0 sum is 1 
ERROR!


bit in

error


(b) 

1 1 1 1 sum is 0 
Does not detect 

2 errors 
bit in bit in 
error error 

(c) 

Figure 6.4 Error detection at channel decoder 
(a) sent bits (b) 1 bit received in error 

(c) 2 bits received in error 
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Let’s consider whether or not we’re able to correct (and not just detect) any trans­
mission errors using single parity check bits. Look at Figure 6.5(a), to see the sent bits. 
In Figure 6.5(b) and 6.5(c), you see two cases of received bits, each with a different bit in 
error. Now, compute the sum for the case of Figure 6.5(b) and the case of Figure 
6.5(c)—in both cases we get a sum of 1. This tells us there’s an error, but we have no 
way of knowing which bit is in error—we can’t tell if it’s the case of Figure 6.5(b) or 
Figure 6.5(c). Therefore, single parity check bits cannot be used to correct any errors. 

sum is 1 
ERROR! 

bit in 
error 

(a) (b) 

sum is 1 
ERROR! 

1 0 1 0 1 1 1 0 

0 0 1 0 

bit in

error


(c) 

Figure 6.5 The lack of error correction at the channel decoder 
(a) sent bits (b) 1 bit received in error (Case 1) (c) 1 bit received in error (Case 2) 

Example 6.1 

Determine the output of a parity check bit coder which, for every 3 bits in, puts 4 
bits out. Assume the input is 001 110. If bit errors occurred in the first two bits, 
could a decoder detect this? 

Solution: With input 001 110, a new bit is added after each 3 bits. That bit 
makes sure that the sum of each set is now 0. So, with 001 110 coming in, 001 1 
110 0 comes out. A 1 is added after the first three bits, with a 0 added after the 
final three bits. 

If the first two bits are in error, we receive 111 1  110 0. At the receiver, we 
form a sum over each set of 4 bits and make sure the sum adds to 0. If it does, we 
say “no error detected”; if it doesn’t add to 0, we say “error detected.”  So in this 
case, we create 1+1+1+1 (modulo 2 sum of first 4 bits) = 0, and over the next set of 
4 bits we create 1+1+0+0 (modulo 2) = 0. So, even though two errors occurred, 
none are detected. 
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6.1.2  Some Terminology 

Before we move on to consider the more sophisticated forms of block coding, I’d like 
to introduce four key terms to remember. Consider a block code that maps each 
incoming set of k bits to an outgoing set of n bits: 

1. First, in shorthand notation, this block code will be called an (n,k) code. 

2. This block code is said to have a code rate of k/n. 

3. This block code is also said to have a redundancy of (n–k)/k. 

4. And finally, this code is said to have (n–k) redundant bits (that is, check bits or 
parity bits), which refer to the added (n–k) bits. 

6.1.3  Rectangular Codes 

In rectangular codes, each set of M·N bits are mapped to a set of (M + 1)·(N + 1) bits. 

Channel Coders for Rectangular Codes 

Let me start by elaborating on what goes on at the channel coder. In Figure 6.6(a), you 
will see that the bit stream is mapped from a serial form into a matrix form. In this 
case, we have each set of 9 bits mapped to a 3 by 3 matrix. Figure 6.6(b) shows you 
what happens next—namely, a parity bit is created for each row and for each column. 
With the addition of this bit to each row, the total sum of each row is now 0. With the 
addition of an extra bit to each column, the total modulo 2 sum of each column is 0. 
These bits, now in a 4 by 4 matrix, are sent serially across the channel as a set of 16 
bits. And that’s it—that’s all the channel coding for a rectangular code. 

parity check 
bit for row 1 

1 1 1 1 

0 1 0 1 

1 1 0 0 

0 1 1 0 

0 1 0 

1 1 0 

1 1 11 1 1 0 1 0 1 1 0 

1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 

parity check 
bit for column 1 

(a) (b) 

Figure 6.6 The workings of the channel coder for rectangular codes — in 2 parts 
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Channel Decoders for Rectangular Codes 

We’ll see what (if any) bit errors we can correct and detect using the channel decoder. 
For simplicity, I’ll take you on a decoder journey using the example shown in Figure 6.6. 

The channel decoder starts by returning the incoming serial bits back to matrix 
form. You can see this ongoing in Figure 6.7, where one of the received bits is in error. 
Next, the channel decoder computes the sum for each column and the sum for each 
row. As you can see, if there is an error in one of the columns, then the sum will be 1. 
If there is an error in one of the rows, then the sum will be 1 for that row. You can see 
clearly from the sums formed in Figure 6.7 that you can locate the exact column and 
the exact row indicating where the single error has occurred, so you know what bit is 
in error. Knowing the bit in error, you can correct the bit by changing its value. There­
fore, from Figure 6.7, we see that rectangular codes can easily correct one bit error. 
Now this is a nice thing, especially when compared to the case of a single parity check 
bit, where you could only detect an error but not correct it. As you can see, we are 
building up to more and more sophisticated block coders. 

sum =

1 1 1 1 0 0 0 1 
 1 1 1 1

0 0 0 1

1 1 0 0

0 1 1 0

1 1 0 0 0 1 1 0 

bit in 
error 

0 

1 error in row! 

0 

0 

sum = 0 1 0 0 
error 

in 
column! 

Figure 6.7 Channel decoder for rectangular codes 

Example 6.2 

Given a rate (2×2)/(3×3) rectangular coder, determine the output for input bits 1 1 0 1. 

Solution: First the four bits are mapped to a 2×2 matrix, and then parity bits 
are added along the columns and rows to make the sum of each column and the 
sum of each row 0.  This is shown in Figure E6.1. Then, these bits are output 
serially (that is, as one long set), leading to the output 110 011 101. 
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Figure E6.1 
Determining rectangular code output 1 1 0 

0 1 1 

1 0 1 

6.2 Linear block codes 

6.2.1  Introduction 

In general, a channel coder grabs each k-bit set and throws out an n-bit set. Let’s say it 
takes in a 3-bit set and it throws out a 6-bit set. There are eight possible 3-bit sets that 
can come in, whereas there are 64 possible 6-bit sets that can come out of the channel 
coder. 

Figure 6.8(a) shows one possible 3-bit to 6-bit channel coder. Figure 6.8(b) shows 
a second possible 3-bit to 6-bit channel coder. In either case, we see that each 3-bit set 
input to a channel coder is mapped to a 6-bit set at the output. But the difference 
between the two is that the 6 bits output when, for example, 111 comes in, are different 
for the two coders. In general, how would we decide which 6-bit sets to output from the 
channel coder? 

Linear block coders are a group of block coders that follow a special set of rules 
when choosing which set of outputs to use. The rules are as follows,  using a (6,3) 
code for illustrative purposes: 

Let 

V = the set of all possible 64 6-bit sequencesn

U = the set of eight 6-bit sequences output at the channel coder 

Using this notation, the rule is this: 

U must be a subspace of Vn . 

This means two ver y simple things: 

1. U must contain {000000} 

2. Adding (modulo 2) any two elements in U must create another element in U. 

Of course, examples make this much clearer to understand. Look at Figure 
6.8(b)—is this a linear block code? 
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0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

Channel 
coder 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  

6 bit output 
for input 000 

possible 3-bit 6-bit outputs for 
inputs (a) given 3-bit input 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

Channel 
coder 

6 bit output 
for input 000 

(b) 

Figure 6.8 Which channel coder do you choose? 

First, looking at the channel coder outputs, we see that the element 000000 is in 
the output of the channel coder (the set U). That satisfies the first part of our rule. 
Now, let’s tr y adding any two elements in U and see if we get another element in U. 
The addition, by the way, is modulo 2. Here, 110110 (7th element) + 011010 (3rd 
element) = 101100 (5th element). Yes, we decide, it definitely is a block code. 

Example 6.3 

Determine whether or not the input bit–output bits in Table E6.1 could represent 
a linear block coder. 

Solution: For a linear block code, you must make sure 0000 is in your output, 
and that the addition of any two output elements (modulo 2) leads to another 
output element. 

We immediately see 0000 as an output element, so we know that we’re OK 
with the first requirement. Next, we’ve got to make sure adding any two elements 
(modulo 2) leads to another element. Tr ying this out, we find, for example, 0101 

0 0 0  0 0 0  
1 1 0  0 0 1  
0 1 1  0 1 0  
1 0 1  0 1 1  
1 0 1  1 0 0  
0 1 1  1 0 1  
1 1 0  1 1 0  
0 0 0  1 1 1  
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(element 2) + 1010 (element 3) = 1111 (element input bits 
4); and 0000 (element 1) + 0101 (element 2) = 
0101 (element 2); and 1010 (element 3) + 1111 0 0  
(element 4) = 0101 (element 2); and so on. Yes, 0 1 
ever y element sum leads to a new element. 

1 0 
With the two rules satisfied, we can safely 1 1 

say that Table E6.1 can represent a linear 
block code. 

output bits 

0 0 0 0 

0 1 0 1 

1 0 1 0 

1 1 1 1 

Table E6.1  A linear block code? 

6.2.2 Understanding Why 

This unusual rule that a linear block code must satisfy might seem like a randomly 
chosen rule. But, as you will now see, this rule actually makes sense. To understand it, 
let’s consider how we can build a block coder. The most obvious way to do it is shown 
in Figure 6.9. The block coder gets the 3-bit input, uses a look-up table, and selects a 6­
bit output using its look-up table. How wonderfully simple. Until... 

There are some block 
coders that map each incom­ Channel coder : uses look-up table 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

0 0 0  
1 1 0  
0 1 1  
1 0 1  
1 0 1  
0 1 1  
1 1 0  
0 0 0  

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

Input Output 1  1  0  1  1  0ing 92-bit set into an output 1 1 0 

127-bit set—a (127, 92) code. 
If we want to use a look-up 
table for this, we’re stuck with 
having to construct a look-up 
table with one input-output 
pair for each possible 92-bit 
input, and there are about 
1028 possible 92-bit pairs. That 
makes for an unbelievably Figure 6.9 Channel coder built using look-up table 
large and expensive look-up 
table! 

With linear block codes, there is another way to generate the output bits given 
those input bits, and it’s an easy method requiring a lot less memor y. It works like this: 
you give me the input bits (let’s say 3 input bits) in the form of a vector m (1 0 1), and 
I’ll give you the output bits (let’s say 6 output bits) in the form of a vector u = (0 1 1 1 0 1) 
by using the simple matrix multiplication 

u = m G. (6.1) 

G is a k by n matrix of 0’s and 1’s called the generator matrix. Also, whenever you 
do an addition when computing m G, you’ll want to do a modulo 2 addition for the 
equation to work. You can only use this simple way to create an output from an input if 
you satisfy the linear block code rule we saw earlier. This is a handy way to generate 
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output bits from input bits, because in this case all you have to store is G, and that is 
only n·k bits. 

Let’s see if this really works, rather than just taking my word for it. Consider the 
generator matrix G corresponding to 


 




L L K L K K


K L L K L K




 

= (6.2) 
L K L K K L


This is the generator matrix for the (6, 3) code seen in Figure 6.10. Let’s say the 
input is m = (1 0 1). Then the output is

 u = mG (6.3) 











L L K L K K 

(= L K L L K L K) (6.4)


L K L K K L



)
If we compare that to the output we expect from the look-up table of Figure 6.9, 

then we see we’ve got a match. 

input to linear block coder output of linear block coder 

( (6.5)
=


0 0 0  0 0 0  0 0 0  
0 0 1  1 1 0  0 0 1  
0 1 0  0 1 1  0 1 0  
0 1 1  1 0 1  0 1 1  
1 0 0  1 0 1  1 0 0  
1 0 1  0 1 1  1 0 1  
1 1 0  1 1 0  1 1 0  
1 1 1  0 0 0  1 1 1  

last 3 bits of outputFigure 6.10 
Systematic linear block codes = 3 input bits 
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6.2.3 Systematic Linear Block Codes 

Look at Figure 6.10 again, which shows the input and the output of a linear block 
coder. Specifically, take a look at the right side of this figure, which shows the output. 
Look carefully at the last three bits of the block coder output, and note that the last 
three bits in the output 6-bit set match the 3 input bits. 

Not all linear block codes satisfy this property, but if they happen to, they are 
called systematic linear block codes. People—mostly engineers—like to use systematic 
linear block codes because it helps them save memory. First, recall that for linear 
block codes you can get the channel coder output by applying the simple equation 

u = mG (6.6) 

If you know that the last bits of the output match the input bits, then you can 
easily show that G will look like (for the case of 3-bit sets mapped to 6-bit sets) 

? = ( !O× O # MO× O ) (6.7) 

! ! # L K K  !LL LJ LO  
=  !JL ! !JO # K L K  (6.8) ! ! ! # K K L


 OL OJ OO 

That means all you need to store in the memory of the channel coder is the 
matrix P. It will be made up of k·(n–k) elements that are either 0 or 1, so it really won’t 
require a lot of memory to store it. 

That is about all there is to know about channel coding for block codes. There really 
is only one rule that makes a block code a linear block code, and it’s only six words long: 
make the output bits a subspace. Once you’ve done that, then you’ve got an easy way to 
get output bits from input bits, using G. If you want to make it even easier, add the rule 
that the last bits of the output have got to match the input bits, and you’ve made the 
matrix G even simpler (and you get to call your code a systematic linear block code). 

Example 6.4 

True or False: The matrix in Equation (E6.1) is the generator matrix for the linear 
block code of Table E6.1 in Example 6.3. 

 L K L K 
? =   (E6.1)

K L K L 
Solution: If G is the generator matrix for the linear block code of Table E6.1, 

then: for every 2-bit input m (e.g., m = (0 0)), the output must be the u (e.g., u = 
(0 0 0 0)) shown in Table E6.1. 
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Let’s see if that’s true: 

( 
= 

(= = K (= (E6.2)


(E6.3)


(E6.4)


(E6.5)


K


K


)
)) 

)

)


( 
=



( 

( 

=  

) 








)

)


( 

( 

= 

= 

=


=


)(= 

)(= 

)

Yep. For every input m, we get the output u of Table E6.1. It follows that the 
G of equation (E6.1) is indeed the generator matrix. 

6.2.4 The Decoding 

What you do at the transmitter, you’ll want to undo at the receiver. At the transmitter, 
with a linear block coder, we mapped, for example, 3-bit sets into 6-bit sets. For the 
sake of simplicity in presentation, let’s assume that our linear block coder maps input 
bits to output bits as drawn in Figure 6.10 (also seen in Figure 6.9). 

Now, the linear block decoder sees a 6-bit set coming in. Let’s say we sent from 
the coder (0 1 1 1 0 1) (the original 3 bits were (1 0 1)). This may arrive at the block 
decoder input without any bit errors (that is, we see (0 1 1 1 0 1)) or it might come to 
the channel decoder input with an error in it (for example, we see (1 1 1 1 0 1)). The 
job of the linear block coder is to do the best it can to figure out the 3-bit set that was 
input to the channel coder. In our case, the decoder will try to figure out that (1 0 1) 
was indeed the input. If there are no errors in the 6-bit set sent, then this should be a 
simple task. If there are errors, then the linear block decoder will hopefully correct 
those errors and then figure out that (1 0 1) was sent. Let’s see exactly how it works. 

In simple, almost nontechnical language, you look at what you’ve got, you correct 
errors as best you can (if there are any), and then you decide on what 3-bit input was sent. 
So, for example, let’s say you pick up at the decoder (1 1 1 1 0 1). In that case, looking 
over at Figure 6.10, you see that this simply isn’t one of the eight possible channel coder 
outputs. An error must have happened somewhere along the way. So you ask: which of 
the eight channel coder outputs of Figure 6.10 is closest to (1 1 1 1 0 1)? In looking at all 

= 
(= = )K (= 
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the eight possible coder outputs, you decide that the closest one is (0 1 1 1 0 1), because 
this differs from the received 6-bit set by only one bit. This is error correction, because, 
as best you can, you’ve corrected the channel error. Now, with the error corrected, and 
(0 1 1 1 0 1) in hand, you use the look-up table of Figure 6.10 and decide that (1 0 1) was 
input to the coder, so you output (1 0 1). 

The channel coder does exactly as described above. Only, being a thing rather 
than a person, it doesn’t have common sense to refer to, so it must be given some 
mathematical rules that allow it to work as if it demonstrated common sense. Here are 
details on how we can get the channel decoder to work in a manner that allows simple 
implementation. 

For starters, we have to introduce some mathematical terms. The first term is 
called the parity check matrix, H, and it works like this: if you give me a channel coder 
that has a generator matrix G, then the parity check matrix H is defined as the matrix 
that satisfies the equation: 

G H = 0 (6.9) 

where 0 refers to the all-zeros matrix. In other words, H is the matrix that when 
multiplied by G produces zip, zero, nada. For example, for the generator matrix of 
Equation (6.7), the corresponding parity check matrix is simply 

OO5 = 
 M × 

 (6.10) 
OO  ! × 

which, for the example of G in Equation (6.2), means 

 L K 


K 

 K L K 

5  
 

= K K  
L 

 
 

K 

L 

L 

L 

 
 

L 

K (6.11) 

 L K L 

You can check this out yourself by simply multiplying the G H, because when 
you’ll do this you’ll get 0, as prophesied. 

If you lack common sense, as a channel decoder does, you can use the H at the 
decoder side in its place. Let’s say you send out from the channel coder the 6-bit set 
u = m G = (0 1 1 1 0 1). 
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Let’s consider Case 1, which is the case when you receive at the channel decoder 
the 6-bit set v that matches the u sent (i.e., v = u = m G = (0 1 1 1 0 1)). Let’s see what 
happens if we take the received v and multiply it by the parity check matrix H. In this 
case, we get 

v H = u H = m G H = m 0 = 0. (6.12) 

Now let’s consider Case 2, the case where the v we receive does not match what 
we sent from the channel coder, because an error occurred along the way. We’ll 
consider the case where v = (1 1 1 1 0 1). In this case, we can describe what’s going on 
according to v = u + e, where u is the sent sequence (0 1 1 1 0 1) and e is the error 
that occurred, represented as (1 0 0 0 0 0). Let’s see what happens when we multiply 
the received v by the parity check matrix H. In this case we get 

v H = u H + e H = m G H + e H = m 0 + e H = 0 + e H = e H = (1 0 0 0 0 0) H 
(6.13) 

which is not 0. In fact, doing the math for the parity check matrix of Equation (6.11), 
you’ll find that v H = (1 0 0 0 0 0)H = (1 0 0). 

Let’s interpret these results. First, look at Case 1 (no error in received 6-bit set, 
and v H = 0), then look at Case 2 (an error in received 6-bit set, and v H = (1 0 0)). 
From these two cases, we can determine a ver y simple result. Any time there is no 
error, multiplying the received 6-bit vector by H gives 0, and if there is an error, 
multiplying the received 6-bit error by H does not give 0. So, using H, the channel 
decoder has an easy way to detect errors. 

Example 6.5 

True or False: the parity check matrix H for the generator matrix 


 

 

= 

(E6.6) 

is 











= 




(E6.7)



Solution: To find out, we simply multiply G H and see if we get zero. Let’s find out: 
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











= = = � 

(E6.8) 

Yep. We get zero, confirming that the H of equation (E6.7) is indeed the generator 
matrix for G in (E6.6). 

Now let’s look into correction of errors. Consider Case 2. We sent u = 
(0 1 1 1 0 0), the error described by e = (1 0 0 0 0 0) arose, which led to the decoder 
input v = (1 1 1 1 0 0). We ended up at the decoder receiving (1 0 0) after multiplying 
by H. If we could tell the decoder that, if after multiplying by H, if you see (1 0 0), 
assume the error is e = (1 0 0 0 0 0), then we can correct for this error. In other words, 
if we can match what we get from v H to errors e, then we can correct the errors. 

Let’s follow engineering convention and call what we get from vH the vector S 
(i.e., vH = S), which is called syndrome. 

So, you’ve received v, and you multiplied it by H and you got S. Now look at this: 

v H = e H = S.	 (6.14) 

(We know v H = e H from Equation (6.13).) So, for ever y error e there is a syn­
drome S. 

In fact, it’s easy to show that there are more e’s than there are S’s, so more than 
one e will share the same S. For example, in the 3-bit set to 6-bit set case of Figure 
6.10, there are 8 S’s while there are 63 e’s. 

Here’s what the channel decoder must do (an example follows the explanation): 

1) For each possible value of S, determine which error e you think has occurred. 
Do this as follows, using our (6,3) code as an example: 

a)	 Realize the value of S = (0 0 0) = 0 indicates no error. That means there are 
8 – 1 = 7 possible S values that we can consider. 

b)	 Start with the most common errors, which are the one-bit errors, i.e., the 
errors represented by the vectors e1 = (1 0 0 0 0 0), e2 = (0 1 0 0 0 0), 
e3 = (0 0 1 0 0 0) to e6 = (0 0 0 0 0 1). For each of these errors e, figure out 
the S using e H = S. So you’ll get S1, S2, S3, up to S6, one for each error 
vector. That accounts for a total of 6 of the 7 remaining S values. 

c)	 There is one S value left unused. Start to consider the e values correspond­
ing to two-bit errors (e.g., e = (1 0 1 0 0 0)), and find an e value such that 
eH leads to the remaining S. 



















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e S = e H 

Step 1.a.0 0 00 0 0  0 0 0  
1 0 10 0 0  0 0 1  

Step 1.b.0 1 10 0 0  0 1 0  
1 1 00 0 0  1 0 0  
0 0 10 0 1  0 0 0  
0 1 00 1 0  0 0 0  
1 0 01 0 0  0 0 0  

Step 1.c.1 1 10 1 0  0 0 1  

Figure 6.11 Mapping errors e to syndromes S 

2) Now, when a vector v arrives, create v H = e H, and you’ll get S. From the 
results of part (1), decide which error e this S corresponds to, and correct the 
error you think happened. 

Here’s an example to illustrate the point. Consider the channel coder of Figure 
6.10, which has G as shown in Equation (6.2) and H as given in Equation (6.11). 
Following step 1, you can create a table linking possible error vectors e to S = e H. 
When you do this, you’ll get results matching Figure 6.11. 

Now, let’s say you sent u = (1 0 1 1 1 0), and you received v = u + e = u + 
(1 0 0 0 0 0) = (0 0 1 1 1 0). Computing v H, we get 

v H = e H = S = (1 0 0). (6.15) 

Now looking to Figure 6.11, we see this syndrome corresponds to error e = 
(1 0 0 0 0 0), so we correct for this error. With the error corrected, we then figure out 
that the 3-bit input was simply (1 1 0) using Figure 6.10. Good work! 

Example 6.6 

Determine a table of errors and corresponding syndromes for the 2-bit to 4-bit 
linear block coder described in Table E6.2 and described by generator matrix 


 

 

= 

(E6.9)
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m 

Table E6.2 Linear block code 
0 0  

0 1 

1 0 

1 1 

u 

0 0 0 0 

0 1 0 1 

1 1 1 0 

1 0 1 1 

and with parity check matrix 

 L K 

 K L


5 = 
 L L

 (E6.10) 

K L 

Solution: 
1. The first error to consider is the no-error case of e = (0 0 0 0). In this case, we have 

 1 0 
  

"
A=0 = eH = ( 0 0 0 0)  0 1 = ( 0 0) 1 0 (E6.11)


 
  0 1


2. The second cases to consider are the one-bit errors, starting with e = (0 0 0 1), 
in which case we have the syndrome 

 L K  
L 

"
A=( K K K L) = A5 = ( K K K L)



 K
K 


 = ( K L)

(E6.12) L 

K L 
3. Next, we’ll consider the one-bit error e = (0 0 1 0), in which case the syndrome 
corresponds to 

 L K  
 K 

"
A=( K K L K ) = ( K K L K)  L

L
 = ( L L)

 L 
 (E6.13) 

K L 
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4. Continuing on, we consider the one bit error e=(0 1 0 0), in which case 

 L K  
 K 

"
A=( K L K K ) = ( K L K K)  L

L
 = ( K L)

 L 
 (E6.14) 

K L 

5. That’s it. We’re out of syndromes. So, our table of errors to syndromes corre­
sponds to Table E6.3. 

So, whenever we receive a set of four bits v, we multiply it by H, and we get 
v H = e H = S. We then use the syndrome table to determine which error e that 
corresponds to, and correct that error. 

S e _ _ 

Table E6.3  Mapping syndromes and errors 
0 0 0 0 0 0  

0 1 0  1 0 1  

1 1  1  0 1 0  

1 0 1  1 1  1  

6.3 Performance of the Block Coders 

Now that you know how these blocks coders work, we’ll characterize their perfor­
mance in order to tell which block coders are better than others. We’ll first 
think—hmmm, what do we want these block coders to do? We want them to detect bit 
errors and we want them to correct bit errors. So, we will measure the performance of 
block coders by determining how well they are able to do both. Specifically, we’ll make 
our performance measures: 

1. P , the probability that a channel decoder failed to detect (or missed) a bit m
error; and/or 

2. P, the probability that a channel decoder failed to correct a bit error. 

With our measuring stick in hand, let’s revisit the channel coders we originally 
looked at, and determine Pm and/or P. 

6.3.1  Performances of Single Parity Check Bit Coders/Decoders 

For single parity check bit coders/decoders, we receive n = (k + 1) bits and can always 
detect an odd number of errors in these bits. But we always fail to detect an even 



2 = J 

( 

Channel Coding and Decoding: Part 1–Block Coding and Decoding �  189 

number of errors. So, the probability Pm (the probability we missed an error) is just the 
probability that an even number of errors occurred. That is, 

n 

P = ∑ P ( j,n) 
(6.16)m


j = 2

j∈ even


where P(j,n) refers to the likelihood of having j bit errors occur in a block of n bits. 
This value can be found from some statistics literature, but rather than make you look 
it up, I’ll just tell you that it refers to 

( − 2( )= 



( 
$ 2 ( L− $) (6.17)2*(! 

2  
where 

 ( (l 
1.    refers to the value 

2l( ( − 2) l and
 2  

2. p is the probability that a bit error occurs when a bit travels from channel coder 
output to channel decoder input (i.e., the probability that a bit error occurs when 
a bit is sent through the modulator, across the channel, and finally through the 
demodulator—look at Figures 6.1 and 6.2 to picture this). 

Also, since these single parity check bits can’t correct any errors, we know that 
P = 1 (i.e., you’re 100% sure that you won’t correct an error). 

6.3.2 The Performance of Rectangular Codes 

We saw that rectangular codes map k = M·N bits to n = (M+1)·(N+1) bits, and by doing 
this they can correct one bit error. One thing I didn’t show you earlier is that the 
rectangular codes cannot correct two or more errors, just that one. (You can show this 
to yourself by putting two errors in the rectangular code and seeing that you can’t 
correct these errors.) So, the probability that you fail to correct an error, P, is simply 
the probability that more than one bit error occurs. Knowing this, you can easily open 
statistics books and figure this out to be (or you can take my word that this P is) 

! = ∑ 2*(!( )  (6.18) 

6.3.3 The Performance of Linear Block Codes 

In linear block codes you take a chunk of k bits and map it into a chunk of n bits. In 
the words of all famous engineering textbooks, let me just say “it can be shown that” 



 

2 = + + L 

( 

190 �  Chapter Six 

the number of bits in error, in each chunk of incoming n bits, that can always be 
corrected is t, where t is the number you calculate from the equation 

− L #ZTU+ = (6.19) J  

Here    refers to the integer you get by rounding x down to the nearest integer, 
and dmin is the number you get by looking at all the channel coder outputs and counting 
the number of 1s in the channel coder output with the fewest 1s (excluding the output 
(0 0 0 0 0 0)). For example, consider the channel coder described by Figure 6.10. In 
this channel coder, the output with the fewest number of 1s (not counting 
(0 0 0 0 0 0)) is the output (0 0 0 1 1 1). This has three 1s in it, so dmin = 3. Then, com­
puting t, we get t =  O − L  = 1. This tells us that, for the channel coder in Figure 6.10, you  J  
can build a channel decoder and always correct all 1-bit errors. You might be able to 
correct a few 2-bit errors as well, but t = 1 tells us that the channel decoder cannot 
always correct all 2-bit errors. 

The probability that the linear block coder will not correct an error, P, is well 
approximated by the probability that more than t errors occur in the incoming chunk 
of n bits. So, using a wee bit of statistics, that means mathematically that 

! = ∑ 2*( ! ( )  (6.20) 

Example 6.7 

If, in the modulator-channel-demodulator part of the communication system, the 
probability that a bit is in error is 1%, what is: 

1. the P for a rate ¾ parity check bit decoder?m

2. the P for a rate 5/10 linear block decoder (assume t = 2)? 

Solution: For the parity check bit decoder, turning to equation (6.16), we find 

n 

P = ∑ P ( j,n)m 
j = 2 (E6.15) 

j∈ even 

4 

= ∑ P j, 4)
j = 2 

( 
(E6.16) 

j∈ even 
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44    j 4⋅ j= ∑   p (1− p )
jj =2    (E6.17) 

j even∈ 

44    j 4⋅ j= ∑   (0.01) (1− 0.01)
jj =2    (E6.18) 

j∈even 

J J M  M K = 



M 
 ( bK KL) ( bK mm) +   ( bK KL) ( bK mm) (E6.19)

J  M   

≅ N ⋅LK −M (E6.20) 

For the linear block decoder, we turn to equation (6.20), which leads us to 

! = ∑! (2] LK ) (E6.21) 

= ∑! (2] LK )−∑! (2] LK ) (E6.22) 

−= ∑! ( 2] LK ) (E6.23) 

2 LK ⋅ 2 
L −= ∑ LK 

 $ (L − $) (E6.24) 
2 =K  2  

   0 10    1 9    210 10 10
= −  (0.01) (1−0.01) +  (0.01) (0.99) +  (0.01) (0.99)8 

1 
0 1 2         

(E6.25) 

= 0.000114 (E6.26) 
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6.4 Benefits and Costs of Block Coders 

So far, all we’ve talked about are the wonderful benefits of block coders. By mapping k 
bits to n bits (n > k), they are able to detect bit errors that occur in transmission, and, 
even better, they can correct such errors. But, alas, as is the case in all things engi­
neering (big and small), there is always a tradeoff. We know what we gain from block 
codes—how about what we lose? 

Take a look at Figure 6.12(a). There you see three bits, mapped by a baseband 
modulator to a non-return-to-zero format. Each bit sent is of duration T. Now look at 
Figure 6.12(b). There you’ll see that a block coder was introduced, and it took three 
bits and mapped it to six bits. To operate in real time, the channel coder had to smoosh 
(squeeze) all six bits in the time inter val that the original three bits fit into. So, the 
same modulator maps the six bits into a non-return-to-zero format, where you can 
clearly see that each bit is of duration T/2. 

Baseband 
modulator 

0 1 1 1 0 1 
1 0 1 1 0 1 Channel 

coder 
Baseband 
modulator 

1 0 1 0 1 1 1 0 1 

T T T T/2 T/2 T/2 T/ T/2 T/22 

3T 3T 

(a) (b) 

Figure 6.12  Illustrating the cost of channel coding 

We’re at a place where, without the channel coder, the bits sent across the chan­
nel are of duration T, and with the channel coding, the bits sent across the channel are 
of duration T/2. It is easily shown (and I’ve shown it in Chapter 5), that the bandwidth 
(frequency range) occupied by a sent bit, BW, varies inversely with bit duration. So, 
before (or without) the channel coding, we have a bandwidth of 1/T, and with channel 
coding we have a bandwidth of 2/T. This means that channel coding comes at the cost 
of significantly increased bandwidth. 
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Specifically, the tradeoff is this. You decide to use a block coder. You get to detect 
and correct errors at the receiver side. You pay the price of requiring more bandwidth 
to send the same amount of information. 

6.5 Conclusion 

Another chapter come and gone. We learned about some interesting devices called 
block coders. They add extra bits to the bit stream, and that costs you bandwidth, but 
they give you the power to detect and correct errors at the receiver side. 

You saw three ways to implement this. First and simplest was the single parity 
check bit coder, which added one bit to each block of k bits, putting out k+1 bits. With 
this added bit, which made sure your k+1 bits added to 0, you could detect an odd 
number of errors. 

Rectangular coders did one better. By mapping M·N bits to (M+1)·(N+1) bits, you 
were able to correct one bit error. 

Then linear block coders were introduced. They required that your output 
codewords be a subspace, and by making that simple requirement they gave you a 
powerful way to build the block coder. The block decoder uses a syndrome in order to 
correct errors. 

Finally, we gave you a way to compare block coders, by providing two perfor­
mance measures and telling you how to compute them for the different block coders 
available to you. The end, for now. 



?
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Problems 

1. Consider a rate 6/7 channel coder using a single parity check bit. 

(a) What is the output for input 100101110011? 

(b) Does the channel decoder detect errors if (1) bit 2 is in error? (2) bit 2 and 
bit 8 are in error? (3) bit 2 and bit 4 are in error? (Explain.) 

2. Consider a rate 9/16 rectangular code. 

(a) What does the channel coder output for input bits 100110001? 

(b) If an error occurs at bit 3, explain how the error is corrected. 

(c) If an error occurs at bit 3 and at bit 7, explain if and how an error is corrected. 

3. (a) What are the two rules that a block code must follow in order to be a linear
 block code? 

(b) Using these two rules, make up a (4,2) linear block code, drawing a table to 
describe it. 

(c) Verify that the (4,2) code you made in (b) is indeed a linear block code by 
showing that it satisfies the two rules in (a). 

(d) Using trial and error (or any other method you can think of), find the

generator matrix G that describes the linear block code.


(e) Verify that G is indeed the generator matrix by insuring that for ever y input 
m it satisfies

 u = mG (Q6.1) 

(f) Find the parity check matrix H, and show that GH = 0. 

(g) Build a syndrome table for correcting errors (a table with errors in one 
column and syndromes in the other). 

(h) Demonstrate (using your syndrome table) what happens when v = u + e = 
(0000)+(0001) enters the block coder. 

4. Consider the 3-bit to 6-bit linear block coder described by generator matrix 


L L K L K K


L L L K L K










 

= (Q6.2) 
L K L K K L
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(a) Plot a table of input bits and output bits that describe the linear block coder. 

(b) Determine the parity check matrix H. 

(c) Create a syndrome table, with errors in one column and syndromes in the 
other. 

(d) Explain if and how the channel decoder corrects e = (001000). 

5. Imagine you have a channel coder and decoder. In between them is 

• a BPSK modulator with A = 1 and T = 2 

• an AWGN channel with N = 2 o

• an optimal BPSK demodulator (Chapter 5) 

(a) What is the probability p that a bit error occurs at the BPSK demodulator? 

(b) If a rate 2/3 parity check bit channel coder/decoder is used, what is the 
probability that the channel coder fails to detect an error? 

(c) If a rate 4/9 rectangular code is used, determine the probability that you 
fail to correct an error. 

(d) Given a 3/6 linear block code with t = 1, find out how likely it is that it fails 
to correct an error. 

6. Name a channel coder/decoder that can 

(a) Detect all 1 and 3 bit errors. (Explain.) 

(b) Detect all 1, 3, and 5 bit errors. (Explain.) 

(c) Correct all 1 bit errors in every 4 bits. (Explain.) 

(d) For (a),(b), and (c), provide an example of a received signal with an error 
on it, and show how the channel coder/decoder detects or corrects it. 

(e) Given the input bits 111000101001, provide the output bits for the three 
channel coders you provided in (a), (b), and (c). 

7. Study Figure Q6.1. Now sketch the output of the modulator when (1) the 
modulator is BPSK and (2) the modulator is QPSK. 

Channel 

111 101 
Modulator Modulator 

Single parity check bit 
Figure Q6.1 

3 bit 4 bit A channel coder and modulator 
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Chapter 

Channel Coding and Decoding:

Part 2–Convolutional Coding and Decoding 

In Chapter 6, we took a careful look at block coders and decoders. We’re now going 
to look at another class of channel coder and decoder, something called a convolu­

tional coder and decoder. Just like the name indicates, convolutional coders and 
decoders are a little bit more complicated than block coders and decoders. 

7.1  Convolutional Coders 

At the transmitter side, convolutional coders, like block coders, take each set of k bits 
and put out a set of n bits. That means an extra (n – k) bits are introduced. At the 
receiver side, a convolutional decoder uses the extra bits to detect and correct bit 
errors. 

There is one main difference between convolutional coders and block coders. In 
block coders, you take a block of k input bits and you put out a block of n output bits. 
The n output bits only depend on the incoming k input bits. Convolutional coders have 
what could be described as a greater appreciation of history. In convolutional coders, 
each k-bit block that comes in is mapped to an n-bit output. But with convolutional 
coders, the n-bit output depends on the current k-bit block that came in, and also on 
the previous K blocks of k bits that came in. This is seen in Figure 7.1. Rather than 
elaborate in general, let’s go to an example. 

7.1.1  Our Example 

We’ll take a look at a convolutional coder which takes in blocks of k = 1 bit at a time 
and puts out a chunk of n = 2 bits. Now, if this were a block coder, we might say, “If a 0 
comes in, map it to a (0 0), and if a 1 comes in, map it to a (1 1).” But it’s not a block 
coder. This convolutional coder makes its decision not just considering the current k = 
1 bit but also by considering the previous K = 2k = 2 bits. 

A picture will make this much clearer, so take a look at Figure 7.2. The arrow on 
the left shows where the bits come in. With k = 1, bits come in one bit at a time. The 
box with lines that the k = 1 bit walks into is meant to represent a 3-bit shift register. 
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1 1 1 10 01 1 1 
Coder 

. . 

Convolutional 

remembers Block of Block of n = 6 
k = 3 bits 1 1 0 1 1 1 bits output 
comes in 

Previous K = 2 sets

of k = 3 bits.


Uses this plus input to

determine output.


Figure 7.1  Convolutional coder idea 

Convolutional coder 

1 
1 1  

01 
1 

+ 

+Block of 
k = 1 bit 

comes in 

Block of 
n = 2 bits 

comes out 

1 

0 

1 2 3 

holdsstores 
current K = 2 

incoming previous bit 
bit sets of k = 1 bit 

Figure 7.2 Example of convolutional coder 
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When the k = 1 bit comes in, it is stored in the position labeled “1.” It moves the bit 
that was in position 1 over to position 2, and what is in position 2 over to position 3. 

Now, we know what is happening to the inputs, but what about the outputs? You 
can see two adders, one at the top of the picture and one at the bottom. The top adder 
takes all three bits in the shift register, adds them together (modulo 2), and uses that 
to create the first bit of the output. The bottom adder takes the first and third bits, adds 
them together (modulo 2), and this forms the second bit of the output. The switch at 
the very right is meant to show the conversion of the two output bits from parallel 
form to serial form. 

In this way, k = 1 bit comes in, and using this one bit and the K = 2 previous bits, two 
output bits are created. We get one bit in, two bits out, and this is a convolutional coder. 

7.1.2  Making Sure We’ve Got It 

Figure 7.3 shows a simple example describing the workings of the convolutional 
channel coder in Figure 7.2. The bits coming in are 1, then 0, then 1 0 0. Let’s together 
figure out what is coming out of the convolutional coder given this input. At time 0, 
before things get started, we have all 0s in the shift register. Now, let’s move to time 1, 
when bit 1 comes in, and see what comes out. Looking at Figure 7.3, we see that when 
a 1 comes into the shift register, it enters into position 1 and a 0 0 ends up bumped into 
position 2 and 3. So the shift register contents are 1 0 0. That means that output 1 is 
1 + 0 + 0 (modulo 2) = 1, and the output 2 is 1 + 0 (modulo 2) = 1. So the output at this 
time is 1 1. 

Time Input bit Shift register Output bits 
contents bit 1 bit 2 

1 2 3 

0 ­


1 1


0 0 0 

1 0 0 

0 1 0 

1 0 1 

0 1 0 

0 0 1 

1 1 

2 0 1 0 

3 1 0 0 

4 0 1 0 
5 0 1 1 

Figure 7.3 Showing the workings of the convolutional coder 

Similarly, at time 2 a 0 comes in, and it bumps the 1 0 into position 2 and 3 in the 
shift register. As a result, the two output bits are: 0 + 1 + 0 = 1 (for the first output bit), 
and 0 + 0 = 0 for the second output bit. We can continue in this way for all the output 
bits, and soon we end up with the outputs shown in Figure 7.3. 
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7.1.3  Polynomial Representation 1 + X + X 2 

Another way to express the operations 
of the convolutional coder is through 
the use of polynomials. Let me explain 
by example. Consider the convolutional 
coder shown in Figure 7.4, looking 
specifically at the lines connecting the 
shift register to the top adder, (which 
outputs the first output bit). We have a 
line connecting shift register position 1 
to the adder, and we represent this as a 1+X2 

1. We also have a line connecting shift 
register position 2 to the adder, and we Figure 7.4 Polynomial representation of 

represent this as X. Finally, we have a convolutional coder 

line connecting shift register position 3 to the adder, and we represent this as X2. We 
denote all these connections that feed the top adder outputting bit 1 by the polynomial 

g
1
(X) = 1 + X + X2 (7.1) 

Similarly, we describe the bottom adder, outputting bit 2, in this way. As this 
adder is connected to shift register position 1, this gets represented by a 1. As it is also 
connected to bit register position 3, this gets represented using an X2. Putting this 
together, the bottom adder outputting bit 2 is described by the polynomial 

g
2
(X) = 1 + X2 (7.2) 

Using g1(X) and g2(X), we have a full description of the channel coder, and we can 
use this description to determine the output given the input. Let’s say the inputs are 
the bits 1, then 0, then 1, then 0, then 0, which we can write as m = 1 0 1 0 0. We 
represent this in polynomial form as m(X) = 1 + 0X + 1X2 + 0X3 + 0X4 = 1 + X2. Now, we 
can get the output by simple polynomial multiplication like this: 

output bit 1 at different times: m(X) ⋅ g1(X) = (1+X2 )(1+X+X2)=1 + X +  + X3 + X4 

output bit 2 at different times: m(X) ⋅ g2(X) = (1+X2)(1+ X2)   =1 +  + X4 

total output bits at different times  11 10 00 10 11 

(Note: To get the correct result when multiplying m(X) ⋅ gi(X) use modulo 2 
addition, e.g., X2 + X2 = (1 + 1)X2 = 0X2 = 0.) 

1 

1 

1 

1 0 
11 

0 

+ 

+ 

1 2 3 

X2 

X2 

1 

1 

X 
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If you compare this to our work in Section 7.1.2, you can confirm that we got the 
correct output bits for the given input bits. So, if you have a love of polynomials, you 
can always represent your channel coder using polynomials. There are many other 
possible representations for the convolutional coder, such as impulse response and 
state transition diagrams, but rather than going through all of these, we’ll jump to the 
most useful of them all, the trellis diagram. 

7.1.4  The Trellis Diagram 

The trellis diagram, shown in Figure 7.5, is a way of representing what goes on at the 
convolutional coder from one time to another. 

time 0 time 1 time 2 

1 2 

0 0	 0 0


1 1

0 1 

1 0 

1 1 

(a) 

time 0 time 1 time 2 time 3 

1 2 

0 0 00 

0 1 

1 0 

1 1 

11 

00 00 

00 00 

10 10 

10 10 

10 

10 

01 01 

01 01 
01 
01 

00 
11 11 
11 11 

11 

(b) 

Figure 7.5 Trellis representation of convolutional coder 
(a) partial  (b) complete 
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Figure 7.5(a) shows you the basics of a trellis diagram. To construct a trellis 
diagram, draw a set of times, say time 0, then time 1, then time 2, and so on, going 
from left to right on the page. Below each time, draw a big dot, one for each possible 
state or node. The state (node) is a short word for saying “what will stay in the shift 
register after the new bit comes in.” For example, look at the coder of Figure 7.2. If a 
new bit comes in, what will stay in the shift register is what is currently in position 1 
and position 2 (what is in position 3 will get bumped out). So in that case the state = 
(bit in position 1, bit in position 2). Possible states are 00, 01, 10, and 11. So below each 
time we draw the states. 

Next we add dotted lines and solid lines leaving each state and entering a new 
state. A dotted line is used to describe what happens when a 1 enters at the input. So 
for example, for the coder of Figure 7.2, say a 1 comes in and we are at state 00 (0 is in 
position 1, and 0 is in position 2). Then, when 1 comes in, the shift register will now 
contain (1 0 0), which means the output bits will be 1 1 and the new state = (what’s in 
position 1, what’s in position 2) = (1 0). This event is shown in Figure 7.5(a), on the 
trellis diagram. 

We add a dotted line and a solid line to each and every dot (state) at each and 
ever y time, which leads us to the diagram of Figure 7.5(b). This is called the trellis 
diagram, and it fully describes all the possible ongoings of the convolutional coder. It 
tells you what comes out (by looking at the top of the line) given what was in the shift 
register position 1 and position 2 (the dot) and the input bit (the connecting line). 

Example 7.1 

Determine the polynomial representation and the trellis diagram for the convolu­
tional coder described by Figure E7.1. 

Solution: Using the rules outlined in Section 7.1.3, the polynomial represen­
tation corresponds to 

g
1
(X) = 1 + X2 (E7.1) 

g
2
(X) = X2 (E7.2) 

Using the rules outlined in Section 7.1.4, the trellis diagram representation is 
shown in Figure E7.2. 

+ 
Figure E7.1 

Convolutional Coder 

in out 
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0 0

0 1

1 0 

1 0

1 1

1 1 

0 0 
0 0 Figure E7.2 

The trellis diagram 

0 1 

1 0 

1 1 0 1 

7.2 Channel Decoding 

Let’s now explore what the channel decoder does. First, we’ll define the task of the 
channel decoder. In Figure 7.6, at the channel coder, a bit sequence m comes in; we’ll 
consider the channel coder of Figure 7.2 with m = (0 0 0) coming in. This is mapped to 
the output, which we’ll call u; in the example we’re considering, u = (00 00 00). These six 
bits are sent across the channel by the modulator and returned to six bits by the de­
modulator. The bits that come out of the demodulator, which feed the channel decoder, 
will be referred to as v. These bits v may or may not be equal to u. An error may have 
occurred in transmission, resulting in v = u + e, where e represents the bit error. For the 
example we’re considering, we’ll say we receive v = u + e = (00 00 00) + (00 00 01) = 
(00 00 01). In this case, one bit error has occurred in transmission at position 6. 

The goal of the 
channel decoder, 
then, is to take the 

u = (00 00 00)m = (0 0 0)bits v that it has 
received, and come 
up with the best C 

Coder 

and outputs 2 bits) 

Convolutional 

of Figure 7.2 
(takes in 1 bit at a time 

Modulator 

h 
guess at m, the	 a 

noriginal information	 n 
ebits. We’ll call the l 

channel decoder’s 
guess at m the vector Convolutional

Decoder m = best guess on mm′. We want to find a 
way to make m′ as 

v = (00 00 01)
a bit error 

Demodulator 

occurred here 

close to m as pos- Figure 7.6 The role of the channel (convolutional) decoder
sible. 
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7.2.1  Using a Trellis Diagram 

How does the channel decoder use a “trellis diagram” to help it figure out how to put 
out an m′ that matches m? The trellis diagram of Figure 7.5(b) shows the possible 
output bits of the channel coder. If you look at the top of the dotted and dashed lines of 
the trellis diagram, you see those possible outputs. 

Let’s return to our example of Figure 7.6 and consider the transmitted output 
u = (00 00 00). We can use the trellis diagram to verify that this u is a possible output 
of the channel coder. Looking at the trellis diagram, we see that (00 00 00) is a possible 
output by following the chain of 00 outputs that sit above the solid lines at the top of 
the trellis diagram. What about the received input v = (00 00 01)? Is that a possible 
output of the channel coder? If you look through the trellis diagram, you can find 00 
output at time 1, followed by a 00 output at time 2, but you see it can’t be followed by 
the output 01 at time 3. So the received v = (00 00 01) is not a possible output of the 
channel coder. 

Therefore, one thing the channel decoder can do is look at the received v (for 
example, v = (00 00 01)) and ask itself if it matches an output path through the trellis. 
If the answer is no, then there must be an error in transmission. That’s an easy way to 
detect errors. 

A convolutional decoder can also correct errors using the trellis diagram. To do 
this, it simply asks itself the following: Given v = (00 00 01), what is the path in the 
trellis closest to this v (in terms of fewest bits different)? Exhaustively searching all 
paths in the trellis, the closest path to v = (00 00 01) is u′ = (00 00 00), as seen in 
Figure 7.7(a). The channel decoder decides that the sent bits must have been u′ = (00 
00 00). “If these are the sent bits, then the input that created them is m′ = (0 0 0),” 
says the channel decoder, “and so we have decided on our output.” 

There is a simple tool that we can use to find m′ once we have figured out u′, the 
closest path in the trellis to the received bits v. All we have to do is look at the trellis— 
at the series of solid and dashed lines that corresponds to u′. A solid line tells us a 0 is 
the bit in m′ and a dashed line tells us that a 1 is the bit in m′. Let me explain by 
example, using Figure 7.7(b) to help. In Figure 7.7(b), you see that u′ = (00 00 00) is 
the output path corresponding to the top lines of the trellis. Now, if you look at the first 
branch of the path, there you see below the 00 a solid line—that tells you the first 
output bit in m′ is a 0. If you look below the second 00, you see a second solid line— 
this tells you the second output bit is a 0, and so on. 

So, the function of a convolutional decoder is really quite simple. It looks at v, 
then looks at the trellis diagram and searches it until it’s found the output path in the 
trellis u′ closest to v. From this u′, it decides on and outputs m′. 



Channel Coding and Decoding: Part 2–Convolutional Coding and Decoding �  205 

time 0 time 1 time 2 time 3 . . . 00 . . . 01)received: v = (00 
0  difference 0  difference 1 difference 

1 2 

one possible path 0 0 

a 2nd  possible path 0 1 

1 0 

a 3rd  possible path 1 1 

00 

00 00 00 

time 0 time 1 time 2 
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11 11 11 

00 00 

00 00 
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10 10 
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01 01 

01 01 

01 

01 01 01 
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01 01 01 

00 

00 00 00 

11 11 
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11 11 11 

time 3 
u . . .. . . 00 00) 

= bits sent = (00 00 00)u 

input bit is 0 input bit is 0 input bit is 0 

 = (00 
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solid line indicates solid line indicates 

Total 1 different 

Total 2 different 

Total 3 different 

Decide: 

1 2 

0 0


0 1


1 0 

1 1 

Decide: = ( 0 0 0 )m 

(b) 

Figure 7.7 
(a) Deciding on closest path in trellis (3 paths shown) 
(b) determining output bits at convolutional decoder
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Example 7.2 

For the convolutional coder described by the trellis diagram of Figure E7.2, 
determine the output of the channel decoder when the channel decoder receives 
v = (11 11). 

Solution: The trellis diagram is drawn over two times in Figure E7.3. Look­
ing over at this figure, we see that the output of the trellis coder can be (11 11) 
when it follows the shaded path. This tells us that the input bits that were sent 
must have been m = (0 0), since: the best path corresponds to two solid lines, 
each solid line indicating an input bit of 0. 

0 0 0 0 

0 1 
0 1 

0 1 

1 0 

1 1 

0 0 

1 0 

1 1 

1 1 

1 0 

0 0 

0 1 

0 1 

0 0 

1 0 

1 1 

1 1 

1 0 

Figure E7.3 Trellis diagram over 2 times 

7.2.2 The Viterbi Algorithm

One thing I haven’t yet mentioned—if you have received, for example, v = (00 00 01 11 
10 00 10 00 00 11 11 11 01 10 01 01 01 11 11 01), then you have to search through the 
trellis to find the path closest to this v. But that search is a long one. Luckily, a fellow 
named Viterbi presented a simple way to look through the trellis. The Viterbi Algo­
rithm (VA for short) lets you (or better yet, your computer or DSP chip), find the 
closest path to v in the trellis easily and effectively. 

Getting the Basic Idea The Viterbi Algorithm is based on a ver y simple idea: 
Start at the time 0 in the trellis, and move through the trellis from left to right. At each 
time, you can systematically eliminate some of the paths in the trellis as being closest 
to v. In fact, according to the Viterbi Algorithm, you can eliminate (at every time) all 
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but four of the paths through the trellis as being closest to v, for the trellis of Figure 
7.5. (In general, you can eliminate all but “s” paths through a trellis at any one time, 
where “s” is the number of states.) 

This path elimination is briefly explained with the help of Figure 7.8. At time L+1, 
look at the top node. There are two paths that head into this node, one originating from 
parent node A and the other originating from parent node B. At time L+1, you can 
make a decision as to who is the better parent and choose between A and B. You 
repeat this for ever y node at time L+1, thus leaving you with four paths through the 
trellis at ever y time. 

Understanding by Example Let’s say we input to the channel coder of Figure 
7.2 the bits m = (0 0), in which case it outputs the bits u = (00 00). Let’s also say the 
channel decoder receives v = (00 00). Let’s use the Viterbi Algorithm to search for u′, 
the path through the trellis closest to v. Once we’ve found u′, we can output m′, our 
guess at the bits sent into the channel coder. 

First, we draw the trellis, and we associate with each start node the number 0. 
This means that we are not biased toward any one start node over any other. This is 
shown in Figure 7.9(a). Then, we start by examining the top node at time 1, which you 
can see in Figure 7.9(b). For this node, there are two possible parent nodes, node 0 at 
time 0 and node 1 at time 0. We are going to decide which is the best parent node, 
using this procedure: 

1. If we started at node 0 (time 0) and moved to node 0 (time 1), the first output 
bits would be 00. Comparing this to v where the first two output bits are 00, we 
say “0 bit errors if parent is node 0 (time 0).” We add this 0 to the 0 number that 
we gave node 0 (time 0) in Figure 7.9(a), for a grand total of 0. 

2. If we started at node 1 (time 0) and moved to node 0 (time 1), the first output 
bits would be 11. Comparing this to v where the first two output bits are 00, we 
say “2 bit errors if parent is node 1 (time 0).” We add this 2 to the 0 number that 
we gave node 1 (time 0) in 
Figure 7.8(a), for a grand 
total of 2. time L time L+1 

Now, since starting at node 0 
(time 0) and moving to node 0 
(time 1) creates the fewest total bit 
errors (0), we proclaim that the 

0 0 

0 1 

node A 

node B 

Can decide on best 
parent node (A or B) 

parent node for node 0 (time 1) is 1 0 
node 0 (time 0), and that it carries 
with it the number 0 (for zero total 1 1 
errors with this selection). We 

Figure 7.8 Underlying idea of VA 
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time 0 time 1 

0 0 0 

0 1 0 

1 0 0 

1 1 0 

(a) 

Read this first 

v = (  00 00 ) 
difference: 

0 0 

1 1 

0 

node 0 

Total 

2 difference: 
Total 

Read this last0 0 = 0+

time 0 time 1


3 

node 0 Best parent: 
0 0 0 

0 node 0 

0 1 0  lowest total 
+node 1 0 2 = 2 

1 0 0 

1 1 0 

(b) 

Figure 7.9 
(a) Setting initial values to 0

(b) picking best parent node (with lowest total) for node 0 
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0 0 

1 0 

0 1 

1 0 

1 1 0 1 

time 0 time 1 

v 00 

0 

0 

0 

0 

= (  00 ) 

node 2 

node 3 

node 1 

1 node 2 

difference 1: 
Total 0 + 1 = 1 

difference 1: 
Total 0 + 1 = 1 

 lowest total

Best parent: 

(c) 

time 0 time 1


node 2

 node 3 

node 1lowest total 0 

lowest total 1 

Best parent: 

Best parent: 
(d) node 2


Figure 7.9 
(c) picking best parent node for node 1
(d) best parent node for nodes 2 4 3
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repeat this for node 1 (time 1). You can see this ongoing in Figure 7.9(c). There, node 
2 (time 0) and node 3 (time 0) are possible parent nodes. We decided between these, 
as follows: 

1. For node 2 (time 0) as starting node moving to node 1 (time 1), the output is 
10. Comparing this to the first two bits of v, which are 00, we say “1 bit error if 
parent node is node 2 (time 0).” We add this 1 to the 0 number that we gave node 
2 (time 0) in Figure 7.9(a), for a grand total of 1. 

2. For node 3 (time 0) as starting node moving to node 1 (time 1), the output is 
01. Comparing this to the first two bits of v, which are 00, we say “1 bit error if 
parent node is node 3 (time 0).” We add this 1 to the 0 number that we gave node 
3 (time 0) in Figure 7.9(a), for a grand total of 1. 

Since starting at node 2 (time 0) or node 3 (time 0) and moving to node 1 (time 1) 
creates the same total bit errors, we proclaim that the parent node for node 1 (time 1) 
is node 2 (time 0) (we use a tie-breaker rule of “always choose the top node in case of a 
tie”). That carries with it the number 1 (for one total error with this selection). 

We repeat this for node 2 (time 1) and node 3 (time 1), and the result of doing this 
is shown in Figure 7.9 (d). That is all we do for our first move from left to right 
through the trellis. 

At the next time, we do a ver y similar thing. We start again at the top node, this 
time starting with node 0 (time 2). Looking at Figure 7.10(a), we can see that this node 
has two possible parent nodes, which are node 0 (time 1) and node 1 (time 1). We 
decide between these two nodes as follows: 

1. If we started at node 0 (time 1) and moved to node 0 (time 2), the second set of 
output bits would be 00. Comparing this to v where the second set of output bits 
are 00, we say “0 bit errors if parent is node 0 (time 0).” We add this 0 to the 0 
number that we gave node 0 (time 1) in Figure 7.9(b), for a grand total of 0. 

2. If we started at node 1 (time 1) and moved to node 0 (time 2), the second two 
output bits would be 11. Comparing this to v where the second two output bits are 
00, we say “2 bit errors if parent is node 1 (time 1).” We add this 2 to the 1 num­
ber that we gave node 1 (time 1) in Figure 7.9(c), for a grand total of 3. 

Since starting at node 0 (time 1) and moving to node 0 (time 2) creates the fewest 
total bit errors (0), we proclaim that the parent node for node 0 (time 2) is node 0 (time 
1), and that it carries with it the number 0 (for zero total errors with this selection). We 
repeat this for node 1 (time 2), node 2 (time 2) and node 3 (time 2); the results are 
shown in Figure 7.10 (b). 
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node 1 

v = (  00 00 ) 

difference: 0 
Total 0 0 0+ = 

time 0 time 1 time 2 Best parent: 0 0node 0 node 0 node 0 

0  lowest total 
node 1 

1 

1 1 

time 2 

(a) 

1 

0 

1 

1 

difference: 2 
Total 1 + 2 = 3 

lowest total 

lowest total 

lowest total 

node 1 Best parent 
2 

node 2 Best parent 
1 

node 3 Best parent 

1 2 
(b) 

Figure 7.10  (a) best parent for node 0 (time 2) 
(b) best parent for nodes 1, 2, 3 (time 2) 

We continue this process until we have run through the trellis for the length of 
time corresponding to the length of v. In our case, since v consists only of two sets of 2 
bits (v = (00 00)), we are done after two times. At the end, we have four end nodes with 
four numbers. For example, end node 0 (time 2) comes with value 0, while end node 2 
(time 2) comes with the value 1. We choose the end node with the smallest value. In 
our example, looking at Figure 7.10, we choose the end node 0. 
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From here, we know the histor y of parent nodes, so we can “backtrack” through 
the trellis, and determine the u′ and the m′. And we’re done. In our case, we choose 
node 0 (time 2) with a final value of 0, and we “backtrack” as shown in Figure 7.11. 
This leads us to the output m′ = (0 0). 

Now you know just how the channel decoder works to undo the effects of channel 
coding, and along the way correct bit errors. 

0 0 

0 1 

time 0 time 1 time 2 

node 0back to 
node 0 

4th item 

Best parent = 

start your 
reading here 

Follow path back Best parent 
is node 0 

Follow line 

to read 

to node 0= 
best parent node 1 0 

1 1 

5 4 , you have path through trellis. 
This path tells you u 

From 1 to 
= (00 00) and m = (0 0) 

Figure 7.11  Explaining “backtracking” through trellis to get output 

Example 7.3 

Use the Viterbi Algorithm to determine the output of a convolutional decoder, 
given 

• the input bits to the decoder are v = (11 11) and 

• the convolutional coder is described by the trellis diagram in Figure E7.2. 

Solution: Figure E7.4 shows the trellis diagram when the Viterbi Algorithm 
is performed. It shows (1) the number-of-errors computation for each branch, (2) 
the best parent selection at each node, (3) the ver y best final node selection; and 
(4) backtracking to determine the best path through the trellis. From this best 
path, the decoder decides that the best output is (0 0). 
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receive: 1 1 1 1 

0 0 error = 2 (total 2) 0 0 error = 2 (total 2) 
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err
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error = 2 (total 3)

0 0 
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 0 (t
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) 

1 1

or =
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otal 1)
 

best parent = 2 0 1 error = 1 (total 1) 0 1 error = 1 (total 2) 
(total 2) 

best parent = 2 
(total 1) 

Figure E7.4 Using the VA to determine best path 

7.3 Performance of the Convolutional Coder 

Now that we know how the coder and the decoder in convolutional coding/decoding 
work, we want to evaluate their performance. Channel coders and decoders are intro­
duced with the intention of correcting bit errors, so we’ll determine how well a 
convolutional coder is able to correct bit errors. In general, a convolutional coder 
can correct e bit errors in about every 4k bits, where the value k is the solution to 
2k = (number of states (nodes)) and e is the value computed according to: 

−

 

 

= (7.3)



d
The key to determining how well the trellis decoder is able to correct bit errors is 

min. It tells you how easy it could be to mistake one path for another in the trellis. 
Specifically, dmin is the smallest distance between any two paths with the same start 
and end node in a trellis. Alternatively, this dmin value is equal to the smallest distance 
between the all-zeroes path and another path through the trellis that starts at node 0 
(time 0) and ends at node 0 (any later time). 



214 �  Chapter Seven 

For example, consider Figure 7.12.  There you see a trellis and you see the all-
zeroes path (the path that when followed gives you an output that is all 0 bits). You see 
another path highlighted that starts at node 0 and ends at node 0. Above each branch 
of that path, you see the output bits, and a number. That number tells you how many 
1’s are output by following this path (and therefore how far it is from the all-zeroes 
path). You combine all these numbers. You repeat this for each path that starts at node 
0 and ends at node 0. The smallest number you get is dmin. In Figure 7.12, d  = 5.min

A path that starts 
at node 0

and ends at All zeroes path


node 0 time 0 time 1 time 2 time 3 

0 0 00 00 00 

0 1 

1 0 

1 1 

11 
2 

10 
1 

11
2 

5 

Total distance from 
all zeroes: 

(2+1+2) 

Figure 7.12  Computing dmin 

7.4 Catastrophic Codes 

There are some convolutional codes that are very bad to use in a communication 
system—in fact, they are so bad that they are known in engineering circles as cata­
strophic codes. A convolutional code is called a catastrophic one whenever the 
following is possible. Look at Figure 7.13. There m = (0 0 0 0 0 0 0 ...) is input to the 
convolutional coder, and u = (00 00 00 00 00 00 00 ...) is output by the convolutional 
coder. This is sent across the channel, where only three bit errors occur for all time, 
and we receive v = (11 01 00 00 00 00 00 ...). In response, the convolutional coder 
outputs m′ = (1 1 1 1 1 1 1 ...). That is, only a finite number of bit errors were intro­
duced in the channel, but the convolutional decoder, in seeing the finite number of 
errors, made an infinite number of errors. Yikes—catastrophic! Can this really 
happen? The answer is that in a badly designed convolutional coder it can! 

Let’s look at how a convolutional coder can make this type of error, so you can be 
sure to avoid building one like this. Look at the convolutional coder drawn in Figure 
7.14. It can be written in polynomial form as follows: 

g1(X) = 1 + X (7.4) 

g2(X) = 1 + X2 (7.5) 
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m = (0  0  0  0  0 ...) 
Coder 

1 bit in - 2 bits out 

Convolutional 

u = (00 00 00 00 ...) 
Modulator 

C 
h 
a 
n 
n 
e 
l 

Demodulator Coder:
Convolutional

Uses VA 
m  = (1 1 1 1 1 ...) v= (11 01 00 00 ...) 

Figure 7.13  A catastrophic code 

Convolutional coder In modulo 2 multiplication and 
addition, we can express g2(X) = 
1 + X2 = (1 + X) ⋅ (1 + X). You can see 
that in this case g1(X) is a factor of 
g2(X). Whenever this happens, the 
convolutional code is catastrophic. If 
it doesn’t happen, then your code is 
okay. 

0 
1 1  

0 
1 

+ 

+ 

Let me elaborate on the cata­
strophic code idea with a simple 

Figure 7.14  Convolutional coder example. Take the coder of Figure 
illustrating catastrophic code 7.14. If you take a few moments to 

represent it by a trellis diagram, 
you’ll end up with the diagram shown in Figure 7.15. Using this trellis diagram, con­
sider this: you input m = (0 0 0 0 ...) which means the channel coder outputs u = (00 00 
00 00 ...). The channel makes only 3 bit errors, and you receive v = (11 01 00 00 00 ...). 
The decoder searches for the path in the trellis closest to this received signal, and it 
finds that there is a path with no errors through the trellis, as shown in Figure 7.15. 
Using this path, the convolutional coder outputs m′ = (1 1 1 1 1 ..). Wow—catastrophic. 
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Sent this path u 

0 0 

0 1 

1 0 

1 1 

00 00 00 00 

time 0 time 1 time 2 

11 11 1111 

00 00 00 00 

10 10 10 10 

11 11 11 11 
00 01 01 01 

10 10 10 10 
01 01 01 01 

time 3 time 4 

Receive this path v 
when only 3 

channel errors 

Figure 7.15  Explaining a catastrophic error in a catastrophic code 

7.5 Building Your Own 

Let’s say that you set out to build your own convolutional coder. Here are the criteria to 
follow to make it a good one (most important criteria first): 

1. Make sure it’s NOT catastrophic. 

2. Make dmin (the smallest distance between the all-zeroes path and any other path 
starting and ending at node 0) as big as possible. That means your code can 
correct more errors e. 

3. Make sure there is only one path with a distance dmin in the trellis. 

4. Build the coder so that the trellis diagram has as few paths as possible with 
distance dmin+ 1. 

5. Build the coder so that the trellis diagram has as few paths as possible with 
distance dmin+ 2. 

Now you’re ready to build your own convolutional coder (although, in fairness, 
you may just end up purchasing a chip with its own ready-to-go channel coders on it, 
already meeting the above criteria). 
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Problems


1. Draw the trellis diagram for the k = 1, n = 3, K = 3 convolutional coder de­
scribed by 

g
1
(X) = 1 + X + X2 (Q7.1) 

g
2
(X) = 1 + X (Q7.2) 

g
3
(X) = 1 + X2 (Q7.3) 

2. Draw the trellis diagram for the convolutional coder described by Figure Q7.1. 

+ 
Figure Q7.1 

Convolutional coder 
out 

in 

3. Given the trellis diagram of Figure Q7.2, determine its block diagram. 

0 0 0 

1 0 

1 1 
0 Figure Q7.2 

Trellis diagram 

0 1 0 0 

01 0 0 

1 1 0 0
0 0 

4. Consider the convolutional coder (k = 1, n = 2, K = 3) shown in Figure Q7.3. 
Use the Viterbi Algorithm to determine the output of the convolutional decoder 
when it receives (10 00 00 10 11). 
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Figure Q7.3 
Convolutional coder 

out 

+ 

+ 

in 

5. Consider the convolutional coder in Figure Q7.4. Use the Viterbi Algorithm to 
determine the convolutional decoder output given its input is (11 01 01 10 01). 

+ 
Figure Q7.4 

Convolutional coder 
out 

in 

6. Consider the convolutional coder (k=1) of Figure Q7.5. 

(a) Determine n and K. 

(b) Describe the convolutional coder using a trellis diagram. 

(c) Assume the signal received by the convolutional decoder is 00 01 00 01. 
Determine, using the Viterbi Algorithm, the output of the decoder. (In 
cases of ties at a node, always assume the top path wins.) 

+ 
Figure Q7.5 

Convolutional coder 

out 
in 

7. Draw the trellis diagram for the convolutional coder in Figure Q7.6. Determine 
if this convolutional coder is catastrophic. If it is, show (using the trellis diagram) 
how a finite number of errors in the channel can cause an infinite number of 
errors at the convolutional coder. 
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+ 

+ 

in 

Figure Q7.6 
Convolutional coder 

out 

8. (a) Build any rate 1/2 convolutional coder (do not use one of the ones already 
used in the problem set or the one used in the text). 

(b) Describe it using a trellis diagram. 

(c) Explain in three to four sentences how the convolutional decoder works. 

(d) Determine if the convolutional coder you built was catastrophic. 





8 
Chapter 

Trellis-Coded Modulation (TCM)

The Wisdom of Modulator and 

Coder Togetherness 

Figure 8.1 shows a communication system with all the parts that we have drawn for 
it so far. The source coder turns the information to bits; the channel coder adds 

extra (redundant) bits to help the receiver correct bit errors; and the modulator turns 
bits into signals ready to be sent over the channel. After traveling the length of the 
channel, a noisy signal arrives at the demodulator. The demodulator returns the signal 
to bits, the channel decoder corrects the bit errors, and the source decoder returns 
the bits to the original analog information. 

In trellis-coded modulation, or TCM for short, the idea is to consider some things 
together. Specifically, at the transmitter side, there is a thoughtful matching of the 
modulator to the channel coder. At the receiver side, the operation of the modulator 
and the channel decoder are actually combined. Let’s look at why this is done and then 
at how it all works. 

r(t) = s(t) + n(t) 

Channel coder 

Channel decoder 

x(t) 

signal 

m 
bits 

u 
bits 

s(t) 

channel + n(t) 

v 
bits 

m 
bits 

x(t) 

Modulator Source coder 

Demodulator Source decoder 

Information 

TCM considers this together 

TCM combines this 

Figure 8.1  The digital communication system (showing where TCM comes in) 



222 �  Chapter Eight 

8.1  The Idea 

Consider the transmitter side of a communication system, which consists of a source 
coder, a channel coder, and a modulator. First, imagine that the channel coder is gone, 
and we have the transmitter shown in Figure 8.2(a). We have a source coder output­
ting bits with a bit duration of T (a bit rate of R = 1/T), and a BPSK modulator which, 
for each bit (0 or 1) that comes in, outputs a signal as shown in Figure 8.2(a). Figure 
8.2(a) also shows the signals output by the modulator in the frequency domain. From 
this figure, we can see that the output signals have a bandwidth (null-to-null) of 
BW = 2/T. 

Now, let’s consider the transmission system with the channel coder back in place, 
as shown in Figure 8.2(b). Here, the source coder maps the information into bits of 
duration T. The convolutional channel coder takes these bits, and for each bit that 
comes in it puts out two bits. To operate in real time, the two bits that come out must 

BPSK 
Modulator Source coder 

x(t) 
Information 

signal 1 0 1 

T T T s(t)= 

−Acos( ω t) +Acos( ω t) −Acos( ω t)c c c 

T T T 

s(t) = −Acos( ω π  t) (t T) t) (t 2T) t) (t) + Acos ( ω π − −Acos( ω π −c c c 

s(f) 

f 
f (1/T)c− fc cf +(1/T)

BW = 2/T 

Figure 8.2(a) System without channel coder 
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fit (in time) into the same amount of time that the incoming one bit fits into—so each 
bit output from the channel coder is of width T/2. See Figure 8.2(b) to get a clearer 
picture of this. Finally, the bits that leave the convolutional coder are passed through 
the modulator, and each 0 and 1 are mapped to the signal as shown by the BPSK 
modulator of Figure 8.2(b). 

This figure also shows the output of the BPSK modulator in the frequency do­
main. As you can see, this signal has a bandwidth (null-to-null bandwidth) of BW = 4/T. 

If we briefly compare the case of a system with a channel coder and the case of a 
system without one—Figure 8.2(b) vs. Figure 8.2(a)—you can see one clear differ­
ence: you benefit from a channel coder because it corrects errors, but when you use a 
channel coder you pay the price of sending signals that require a larger bandwidth. 

One day, a fellow named Ungerboeck said to himself, “There must be some way 
to get the benefit of a channel coder without the cost of increased bandwidth.” He 

Source coder 
BPSK 

Channel 
Coder 

Modulator 

Convolutional 

s(t)x(t) 
Informational 1 0 1 1 1 0 1 0 1


signal

T T T T T T T T T


2 2 2 2 2 2


s(t)= 

−Acos(ωct) −Acos(ωc t) −Acos(ωc t)
Acos(ωct)

T T T T T T 
2 2 2 2 2 2 

S(f) 

f 
f (2/T)c− fc cf +(2/T)

BW = 4/T 

Figure 8.2(b) System with channel coder 
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came up with the idea shown in Figure 8.3. First, comparing Figure 8.3 to Figure 
8.2(b) shows us that these two figures are ver y closely related. In fact, the only differ­
ence is that the system of Figure 8.3 uses a QPSK modulator, while the system of 
Figure 8.2(b) uses BPSK. Let’s see what difference this makes. First, the transmitter 
uses the same source coder to map the information to bits of duration T. Then, a 
channel coder is used, which for ever y one bit that comes in creates two bits, each of 
duration T/2. Finally, the modulator, a QPSK modulator, takes every two bits and maps 
them to a symbol as shown in Figure 8.3. 

Figure 8.3 shows the output of the system in the time and frequency domain. 
Looking at this output in the frequency domain, we see that the signal output has a 
bandwidth (null-to-null bandwidth) of BW = 2/T. This bandwidth is the same band­
width as that of the original (no channel coding system) of Figure 8.2(a). 

Basically, what Ungerboeck realized (and what Figures 8.2 and 8.3 confirm) is 
that if you introduce a channel coder, and follow it by a modulator that takes in more 
bits, then you can use channel coding without increasing the bandwidth of the trans­
mitted signal. That turned out to be a ver y good idea. 

Channel 
Coder 

Source coder 
Convolutional 

1 0 1	 1 1 0 1 0 1 

T T T	 T T T T T T 
2 2 2 2 2 2 

* 

* 

QPSK 
Modulator 

1 1 0 1 0 1 

s(t)= 

Acos(ωct+3 /2) π Acos(ωct+ /2) π Acos(ωct+π/2) 

T T T 

c cπ π c π πs(t) = Acos(ω t + 3 /2) (t) + Acos ( ω t + π/2) (t − T) + Acos(ω t + π/2) (t −2T) 

S(f) 

f 
f 1/Tc− fc cf +1/T

BW = 2/T 

Figure 8.3 Ungerboeck’s idea for a new transmitter 
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8.2 Improving on the Idea 

There were still a number of details that had to be resolved before this idea was em­
braced by the engineering community. In Figure 8.4(a) you see the outputs of a BPSK 
modulator, which are Acos(ω ct)π(t – iT) and Acos(ω t + 180°)π(t – iT). An error will only c 
occur if the noise of the channel is big enough to make a 180-degree phase shift occur. In 
Figure 8.4(b) you see a drawing of the outputs of the QPSK modulator, which shows that 
the signals sent by the modulator are Acos(ω t)π(t – iT), Acos(ω ct + 90°)π(t – iT),c 
Acos(ω ct + 180°)π(t – iT) and Acos(ω t + 270°)π(t – iT). In this case, an error occurs if c 
the noise is big enough to make it look like a 90-degree phase shift has occurred. By 
adding a QPSK modulator in place of a BPSK modulator, the noise in the system will 
introduce more errors—possibly so many more that the system of Figure 8.3 will be 
lousy when compared to the systems of Figure 8.2(a) and (b). 

BPSK 
Modulator 

In Out Output in signal space 
0 
1 

s (t) = Acos( t) (t - iT) 0 cω π 
s (t) = Acos( t + ) (t - iT) 1 cω  π π  

s1 s0 

–A√(T/2) A√(T/2) 
ϕ √ ω π1 c(t) = (2/T)cos ( t) + (t - iT) 

(a) 
2A√(T/2) 

QPSK 
Modulator 

In Out Output in signal space 
0 0 s (t) = Acos( t) (t - iT) ωc π 
0 1 s (t) = Acos( ω t + π/2 π 

0 

) (t - iT) 
1 0 s (t) = Acos( ω t + π π  

1 c
) (t - iT) 

s1 
A√T/2 

A√T/2 

√ 

ϕ2(t) 

1 1 s (t) = Acos( ω t + 3π/2 π 
2 c

) (t - iT) 2 A√T/23 c

s0 

ϕ 1(t) 

s2 

s3 

(b) 

Figure 8.4 Comparing BPSK to QPSK 
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Ungerboeck resolved this problem by coming up with “mapping by set partition­
ing,” shown in Figure 8.5.  There you see a source coder, a new convolutional coder 
which takes two bits and maps into three bits, and a modulator using an 8-PSK constel­
lation. Let’s examine this figure. 

+ 

+ 

1 2 3 

coder 
8-PSK 

m m1 2 m2 

m1 u1 

u2 

u3 

1 2  3  s(t) 

Uses

Source 
modulator u u  u  

 mapping by 
set partitioning 

Convolutional Coder 
2 bits in 3 bits out 

Figure 8.5 Ungerboeck’s new transmitter 

First, the channel coder takes in two bits (m1, m2) at each time and outputs three 
bits (u1, u2, u3) at each time. To better understand its workings, we’ll draw a trellis 
diagram for the channel coder as shown in Figure 8.6. First, the nodes (dots): there 
are four nodes, one for each possible (bit at position 1, bit at position 2) pair. Then the 
branches: the solid branch indicates that incoming bit m2 is 0; the dotted branch 
indicates that the incoming bit m2 is 1. If the branch is drawn on top (i.e., if it is the top 
branch of a pair) then that means the incoming bit m1 is 0; if it corresponds to the 
bottom branch, then that means the incoming bit m1 is 1. For a given state (node) and 
a given input (branch), the three-bit output that comes out of the channel coder is 
drawn above the branch. 

Now let me explain the 
time 0 time 1 time 2 

modulator and how Ungerboeck 1 2 
000 000

said it would work. His idea was 0 0 100 100 

this: First, draw pretty pictures of 111
011 

011 111 
111
011 

011 111 

the modulator outputs. Look at 0 1 000 000 
Figure 8.7, where we see on top 100

010 110 
100

010 110
the eight possible outputs of an 8­ 1 0 001 001 
PSK constellation, drawn on the 
orthonormal basis (look back to 
Chapter 5 for a refresher if you’d 

1 1 

101
001 101

010 

110 

101
001 101

010 

110 

like). Figure 8.6 Trellis diagram describing channel coder 
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iT)ϕ −√ ω π −2 c(t) = (2/T)sin( 
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s7 

s0 
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t) (t 
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7
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1 3
2
4 0


6
 5
 7


Figure 8.7 Splitting the 8-PSK constellation 
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Next, separate these points, by putting half on the left and half on the right— 
making sure you separate them so that ever y point has a new neighbor, and so that 
each point in a new set of points is as far away as possible from its new neighbors. You 
can see this in the second drawing of Figure 8.7. Then, take these points and split 
them again, just as you split the first set. You can see this in the third drawing of 
Figure 8.7. Do this again, and again, until all that’s left is a set of single points, just as 
on the bottom picture of Figure 8.7. 

At this point you might think that Ungerboeck had given up engineering alto­
gether and taken an unusual interest in modern art, but fear not, he had good 
engineering intentions. Next, he said, you build a modulator with this cool-looking 
picture, where at the bottom of the picture are single points (representing output 
modulation signals). You match the bits coming into the modulator to the output 
modulation signals shown at the bottom of the picture in Figure 8.7, using the trellis 
diagram. Ungerboeck came up with just two rules: 

(1) All parallel transitions (transitions that start and end at the same node) are 
separated by the maximum possible distance; and 

(2) All transitions diverging from or merging to a single node are assigned the 
next maximum distance. 

It’s hard to explain these 
time 0 time 1

rules in general, so let’s go to our 
example, where they will make 
sense. Take a look at Figure 8.8. 
Look first at the top branches. 

000 

100 
011111 

011 
111 

000
100 

010 110 

001101 

001 101 

010 

a 

b 

c 

0 
4 

2 
6 

2 

6 

0 

4 

3 

7 
1 

5 

1 
5 

3 

7 

1 2 

0 0 
There are two branches starting 
at node 0 and ending at node 0— 
these are called parallel branches. 
Ungerboeck said in rule (1) that 0 1
these branches should be as­
signed points that are as far apart 
as possible. Looking at Figure 8.7, 
I will assign one branch point 4 
and the other branch point 0. You 1 0 

can see this in Figure 8.8, marked 
(a). You can also see that our 
selection tells us that modulator 
input bits (0 0 0) are mapped by 1 1 

the modulator to point 0, and (1 0 110 

d 

0) is mapped by the modulator to Figure 8.8 Assigning modulation symbols to
the modulator output labeled 4 incoming bits using the trellis
(see Figure 8.8, marked (b)). 
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Next we’

—giving the branches either the points 1 and 5, or 2 and 6, or 3 

and it tells us which of these to choose. Rule (2) says that all branches leaving the 
same node must be given the next maximum distance—in our case, since “0 and 4”

’ll want to choose “2 and 6” to be the other points leaving 
“3 

and 7” or “1 and 5”

In 

000 

001 

010 

011 

100 

101 

110 

111 

Output symbol number 

0 

1 

3 

2 

4 

5 

7 

6 

Output symbol 
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A/ 

s 

s 
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1 

3 

2 

4 

5 

7 

6 

√ 

√ √ √ 

− √ √ 

√ 

− √ 

− √ − √ 

√ − √ 

− 

T/2, 0) 

2 T/2, T/2) 

T/2, T/2) 

T/2) 

T/2, 0) 

T/2, T/2) 

T/2, T/2) 

) 

Output signal 

iT)0 cω π − 

ω π π − 

ω π π − 

ω π π − 

ω − 

ω π π − 

ω π π − 

ω π π − 

/ iT) 

iT) 

iT) 

) (t iT) 

iT) 

iT) 

iT) 

1 c 

3 c 

2 c 

4 c 

5 c 

7 c 

6 c 

A/√2 

A/√2 A/√2 

A/√2 

A/√2 A/√2 

A/√2 

A/√2 

Figure 8.9 8-PSK modulator input and output created using trellis of Figure 8.8 

For this example, we’

ll move to the branches going from node 0 to node 2. There are two 
branches here, so following rule (1), we want to assign to these branches two points as 
far apart as possible
and 7 (Figure 8.7). We seem to have a choice here. But now rule (2) comes into play, 

 are 
already leaving the node 0, we
the node 0 (since these points are farther from 0 and 4 than our other choices of 

). This is shown in Figure 8.8 (marked (c)). From here, we can see 
that the input bits (0 1 1) are mapped to the modulator output labeled 2, and the input 
bits (1 1 1) are mapped to the modulator output labeled 6 (see Figure 8.8, marked (d)). 

We can continue in this way, moving through our entire trellis, and we quickly 
end up with the trellis shown in Figure 8.8. This indicates that the modulator maps 
input bits to output symbols as you can see in Figure 8.9. 

And with that, Ungerboeck smiled, for he had just devised a smart way to build 
modulators that were matched to channel coders. 

= (A 

s = (

s = (  

= (0, A 

s = (  A  

s = (  

s = (  

= (0, 

s (t) = Acos( t) (t 

π π  

s (t) = Acos( t+ 4) (t 

s (t) = Acos( t+3 /4) (t 

s (t) = Acos( t+ /2) (t 

s (t) = Acos( t+ 

s (t) = Acos( t+5 /4) (t 

s (t) = Acos( t+7 /4) (t 

s (t) = Acos( t+3 /2) (t 

Example 8.1 

ll use the convolutional coder of Figure 8.5. But this time, an 
8-ASK modulator will be used, in place of an 8-PSK modulator. Match the outputs of 
the 8-ASK modulator to the different branches of the trellis shown in Figure 8.6. 
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Solution: First, the 8-ASK constellation is separated into parts, separating the 
constellation into points further and further apart, as shown in Figure E8.1. 

Next, we assign each point in the 8-ASK constellation to a branch in the 
trellis according to the two rules spelled out by Ungerboeck: all parallel transi­
tions separated by a maximum distance, and all transitions diverging or merging 
get the next maximum distance. Applying this rule leads to the first two columns 
of Figure 8.9, where this time the 0’s, 1’s, …, 7’s refer to the points marked in 
Figure E8.1. 

The 8 PSK constellation drawn in its orthonormal basis 

x x x x x x x x 1(t)
0 1 2 3 4 5 6 7 

x x x x x x x x 
0 2 4 6 1 3 5 7 

x x x x x x x x 
0 4 2 6 1 5 3 7 

x x x x x x x x 
0 4 2 6 1 5 3 7 

Figure E8.1  Separating the 8-PSK points 

8.3 The Receiver End of Things 

At the receiver side, Ungerboeck had an unusual idea: he would combine the demodu­
lator and channel decoder together and they would operate as a single device, as 
shown in Figure 8.10. He would call his new unit the TCM decoder. We’ll explain how 
it works using an example, shown in Figure 8.11. 
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Channel 
decoder

r(t) = s(t) + n(t) bits 
v 

bits 
m 

Demodulator 

Combine 
to get 

T C M 
Decoder 

bits 
m 

r(t) = s(t) + n(t) 

Figure 8.10  Ungerboeck’s idea at the receiver side 

8.3.1  The Input 

First, we’ll figure out what is coming into the decoder (its input). Figure 8.11(a) 
shows the communication system under consideration. The input to the channel 
coder is m = (00 00 00 00), which makes its output u = (000 000 000 000). These bits 
enter into the modulator. Looking back at the modulator in the previous section (we 
studied it in Section 8.2, and detailed it in Figure 8.9), we know that for each input of 
000, the modulator outputs the signal corresponding to “0”, which corresponds to 
Acos(ω ct)π(t – iT). More importantly to our case in hand, for the input u = (000 000 
000 000), the entire output corresponds to (as seen in Figure 8.11): 

s t  ) = Acos (ω t )π(t ) + Acos (ω π(t  T  ) + Acos (ω π(t − 2T ) + Acos (ω π(t − 3T )( c t) − t ) t)c c c 

(8.1) 

s t  1 ( )  + s  t  3 ( )  + s  t  ( )=  s  t  2 ( )  + s  t  4 ( )  
(8.2) 

where si(t) = Acos(ω ct)π(t – (i – 1)T). Graphically, we have s(t) corresponding to the 
plot shown in Figure 8.11(a). This signal s(t) leaves the modulator and is sent out 
across the channel, which adds a noise to the transmitted signal s(t). The resulting 
signal is 

( )  ( )+ + ( ) (8.3)+ H = + / (
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Channel 
coder 

8-PSK 
s(t) 

modulator 

m = (00 00 00 00) u = (000 000 000 000) Output symbol # 0 0 0 0 

Output symbol s0 s0 s0 s0 

Output signal s(t) = 

0 T 2T 3T 4T 

Acos(ωct) Acos(ωct) Acos(ωct) Acos(ωct) 

1 2 3s (t) s (t) s (t) s (t)
(a) 

s(t) + r(t) = s(t) + n(t) 

n(t) 

0 T 2T 3T 4T 

1 1 1 

2 2 2 

4 4 4 

3 3 3 

r (t) = s (t) + n (t) 
r (t) = s (t) + n (t) 

r (t) = s (t) + n (t) 

r (t) = s (t) + n (t) 

1 2 3 4r(t) = r (t) + r (t) + r (t) + r (t) 

(b) 

Figure 8.11  Getting the input to the TCM decoder 
(a) modulator output s(t)

(b) channel output = TCM decoder input = r(t) = s(t) + n(t) 
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which is drawn in Figure 8.11(b). As shown in this figure, another way to express r(t), 
more convenient in our upcoming presentation, is to write r(t) as a sum of time-sepa-
rate components. This leads to an r(t) written as: 

+ H L + M( )= H (+ )+ H (H )+ H ( )+ H ( )+ (8.4) 

where r1(t) = s1(t) + n1(t), r 2(t) = s2(t) + n2(t) and so on. This r(t) feeds the TCM 
decoder. 

8.3.2 The TCM Decoder Front End 

With r(t) coming in, let’s see what the TCM decoder does. It gets started with a 
decoder front end. Looking at each time inter val separately, we see 

H ( )= / ( )+ ( ( )+ (8.5) 

where si(t) = Acos(ω ct) ⋅ π(t – (i – 1) T ) .  

We know, from our reading in Chapter 5, that the r i(t) can be represented 
fully on the orthonormal basis φ1 ( ) = 2 cos (ω  π (t −(i −1)T ), φ 2 ( ) = 

π ω (+ − (> −L)8 ) . Specifically, ri(t) can be represented as: 
t T ct ) t 

− J 
8 STU( )  
H = ( H * H ) (8.6) 

where 

H = /> + ( (8.7) 

= /> + (> (8.8) 

Here, (/ ] / )= (. 8 K ] ) and n i and n i  represent independent Gaussian random 
L J J 1 2 

variables. 

Now, Ungerboeck knew this too. He said to himself: Since r i(t) can be fully 
represented as a vector of two values, what I’ll do to start out the construction of the 
TCM decoder is build a device that maps ri(t) into the vector r i = (r i, r i).1 2 

With that in mind, Ungerboeck drew the TCM decoder front end shown in Figure 
8.12. This simply maps r i(t) into its alternative representation of r i = (r i, r i).1 2 

When the decoder front end was done with the incoming r(t), this is what came 
out of the receiver front end: 

IN: r1(t), r2(t), r3(t), r4(t) 

OUT:  r1, r2,  r3,  r4 
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× 

× 
i i i 

S 

S 

ϕ 1 (t) 

r1 
i 

r2 
ir (t) = s(t) + n (t) 

ϕ2(t) 

Figure 8.12  The TCM decoder front end 

8.3.3 The Rest of the TCM Decoder 

Ungerboeck noted that he had in his TCM decoder something he could write as one 
big vector: 

H = ( L]H H
J ] HO ] HM ) (8.9) 

He could write this as

H = �I + (8.10) 
iwhere s = (s1, s2, s3, s4) (and si = (s1 , s2 

i)) represents the sent signal from the modula­
itor and n = (n1, n2, n3, n4) (and ni = (n1 , n2 

i)) represents the channel noise. 

He wanted to go from this long vector r to what he called m′, a decision on the 
incoming bits m. The idea is this. You have r = (r1, r2, r3, r4). You’d like to decide on 
the four sent symbols s = (s1, s2, s3, s4). If you knew s, the signals sent from the 
modulator, then you could, by looking at the table of Figure 8.9, figure out m, the sent 
bits. 

So, given r, you want to figure out what I’ll call s′, your best guess on the transmit­
ted s. To do this, you look at the trellis diagram, which you’ll find redrawn in Figure 
8.13. You find the one path through the trellis that creates an s as close as possible to 
the sent r. By this, I mean you find the path through the trellis that minimizes the 
value 

H H H H− I − I − I − I (8.11) 
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2 3RECEIVE r = (r 1 r r r4 ) 
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s0 
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s6 
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s6s0 
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s3 

s7s1 

s5 

s1 

s5s3 
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s6 
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s4
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s1 

s5s3 

7 s7 s7 s7 

Figure 8.13  The trellis diagram of Figure 8.8 – 
representing channel coding and modulation 

where si refers to the ith output symbol of the selected path in the trellis and 
i iri – si refers to the distance between ri = (r1 , r2 

i) and si = (s1 , s2 
i). The one path through 

the trellis closest to r indicates the sent s, and from this you can then determine the m. 

Let’s look at an example. In the example we’ve been considering throughout 
Section 8.3, the sent s corresponds to 

I = (I ] I ] I ] I ) (8.12) 

i i
where si = (s s2 ) = ( A T

2 ,  0  ) . Let’s assume A = 1 V and T = 2 sec, which leads us1 , 
ito si = (s1 , s2 

i) = (1, 0). We’ll also assume that the noise n is a noise which leads to 

L J O M M
H = I + � = (I + �L] I + �J] I + �O] I + � ) (8.13) 

where 

is + ni = (1, 0 ) + (0.1, 0.1 ) = (1.1, 0.1 ) (8.14) 

We can easily show, by an exhaustive search of the trellis diagram of Figure 8.13, 
that the path through the trellis that has a corresponding s = (s1, s2, s3, s4) closest to r 
is that shown in Figure 8.14. Now, looking at the branches of this path through the 
trellis (solid branch indicates m2 = 0, top branch indicates m1 = 0), we immediately 
figure out that the decoder should output m′=(00 00 00 00 00). 
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s0=(1,0) s0=(1,0) s0=(1,0) s0=(1,0) 

Figure 8.14  Best path through trellis given 
r = ((1.1, 0.1), (1.1, 0.1), (1.1, 0.1), (1.1, 0.1)) 

Example 8.2 

Assume, as in the section just before this example, that a rate 2/3 convolutional 
coder is followed by an 8-PSK modulator. Let the trellis diagram describing these 
operations correspond to Figure 8.8. Assume the input bits are m = (00 00 00 00), 
which means the output from the convolutional coder is then v = (000 000 000 000), 
and the output from the modulator is thus the 8-PSK output that can be expressed 
on an orthonormal basis as

 s = (s1, s2, s3, s4) = ((1,0), (1,0), (1,0), (1,0)) (E8.1) 

Now, assume that the channel is particularly noisy, and somehow the de­
modulator receives 

r = s + n = ((1,0), (1,0), (1,0), (1,0)) + ((0.9, 0), (0.9, 0), (0.9, 0), (0.9, 0))
 = ((1.9, 0), (1.9, 0), (1.9, 0), (1.9, 0)) 

(E8.2) 

Determine the output of an optimal decoder. 

Solution: At this point in the chapter, an exhaustive search through the 
trellis would have to be performed to determine the best path. However, in this 
case, a little bit of thinking let’s us avoid an exhaustive search. 

As you can see in Figure E8.2, the received value (1.9, 0) is closer to (1, 0) 
than any other point in the 8-PSK constellation. This tells us that if the path corre­
sponding to outputs of (1, 0) exists, this would be the closest path to inputs (1.9, 0). 
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x 

x 

x x 

x 

x 

x 

x 

(1.9, 0)(1, 0) 

closest point in an 
8-PSK constellation 

Figure E8.2 Closest point to (1.9, 0) in our 8-PSK constellation 

That (1, 0)’s path does indeed exist—it’s the top line through the trellis. So, 
following this top line, which corresponds to the best path through the trellis, we 
decide to output the bits (00 00 00 00). 

8.3.4 Searching for the Best Path 

One thing that the decoder must do is search for the best path through the trellis— 
that is, search for the path through the trellis that has an s closest to r. One way to 
figure out the best path is to perform an exhaustive search of all paths and figure out 
which one demonstrates an s that is closest to r. But this is computationally ver y 
expensive. 

There is a better and easier way to search through the trellis, using a method 
we’ve seen earlier, when we discussed channel decoders for convolutional codes. It’s 
called the Viterbi Algorithm. 

Let’s look at an example to show how to apply the Viterbi Algorithm to find the 
best path through the trellis in the case of trellis-coded modulation. We’ll use the same 
example from the previous subsection, where 

H = (H ] H ] H ] H ) (8.15) 

and 

ri = (1.1, 0.1). 

Let’s use the Viterbi Algorithm to search for s′, the path through the trellis 
closest to r. Once we’ve found s′, we can output m′, our guess at the bits sent by the 
transmitter side. First, we draw the trellis, and we associate with each start node the 
number 0. This means that we are not biased toward any one start node over any 
other. This is shown in Figure 8.15(a). Then, we start by examining the top node at 
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(b) 

Figure 8.15  Using the VA to move from time 0 to time 1 through trellis 



Trellis-Coded Modulation (TCM): The Wisdom of Modulator and Coder Togetherness �  239 

time 1 

Node 0 (time 0), top 
0.02 

Node 3 (time 0), top
 0.5 

Node 1 (time 0), top 
0.02 

Node 2 (time 0), top 
0.02 

(c) 

Figure 8.15 (continued)  Using the VA to move from time 0 to time 1 through trellis 

time 1, which you can see in Figure 8.15(b). For this node, there are two possible 
parent nodes, node 0 at time 0 and node 1 at time 0. Each node comes with two pos­
sible branches, a top branch and a bottom branch. We are going to decide which is the 
best parent node and the best branch for node 0 (time 1), like this: 

1. If we started at node 0 (time 0) and moved to node 0 (time 1) using the top 
branch, the first output symbol would be (1, 0). Comparing this to r where the 
first symbol is (1.1, 0.1), we say “d1 = (1.1 – 1)2 + (0.1 – 0)2 = 0.02 distance if parent 
is node 0 (time 0), top branch.” We add this 0.02 to the 0 number that we gave 
node 0 (time 0) in Figure 8.15(a), for a grand total of 0.02. 

2. If we started at node 0 (time 0) and moved to node 0 (time 1) using the bottom 
branch, the first output symbol s1 would be (–1, 0). Comparing this to r where the 
first symbol is (1.1, 0.1), we say “d2 = (1.1 –  (– 1))2 + (0.1 – 0)2 = 4.85 distance if 
parent is node 0 (time 0), bottom branch.” We add this 4.85 to the 0 number that 
we gave node 0 (time 0) in Figure 8.15(a), for a grand total of 4.85. 
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3. If we started at node 1 (time 0) and moved to node 0 (time 1) using the top 
branch, the first output symbol s1 would be (0, 1). Comparing this to r where the 
first output symbol is (1.1, 0.1), we say “d3 = (1.1 – 0)2 + (0.1 – 1)2 = 2.02 distance if 
parent is node 1 (time 0), top branch.” We add this 2.02 to the 0 number that we 
gave node 1 (time 0) in Figure 8.15(a), for a grand total of 2.02. 

4. If we started at node 1 (time 0) and moved to node 0 (time 1) using the bottom 
branch, the first output symbol s1 would be (0, –1). Comparing this to r where the 
first output symbol is (1.1, 0.1), we say “d4 = (1.1 – 0)2 + (0.1 – (– 1))2 = 2.42 
distance if parent is node 1 (time 0), bottom branch.” We add this 2.42 to the 0 
number that we gave node 1 (time 0) in Figure 8.15(a), for a grand total of 2.42. 

Since starting at node 0 (time 0) and moving to node 0 (time 1) along the top 
branch creates the smallest distance (0.02), we proclaim that the parent node for node 
0 (time 1) is node 0 (time 0) and the best branch is the top branch, and that it carries 
with it the number 0.02 (for total distance with this selection). 

We repeat this for node 1 (time 1), node 2 (time 1) and node 3 (time 1), and the 
results are shown in Figure 8.15(c). That is all we do for our first move from left to 
right through the trellis. 

At the next time, we do a similar thing. We start again at the top node, this time 
starting with node 0 (time 2). Looking at Figure 8.16, we can see that this node has 
two possible parent nodes, which are node 0 (time 1) and node 1 (time 1). Each parent 
node comes with two possible branches. We decide between these nodes and branches 
as follows: 

1. If we started at node 0 (time 1) and moved to node 0 (time 2) using the top 
branch, the second output symbol would be (1, 0). Comparing this to r where the 
second signal is (1.1, 0.1), we say “d1 = (1.1 – 1)2 + (0.1 – 0)2 = 0.02 distance if 
parent is node 0 (time 1), top branch.” We add this 0.02 to the 0.02 number that 
we gave node 0 (time 1) in Figure 8.15(b), for a grand total of 0.04. 

2. If we started at node 0 (time 1) and moved to node 0 (time 2) using the bottom 
branch, the second output symbol would be (–1, 0). Comparing this to r where 
the second signal is (1.1, 0.1), we say “d  = 4.85 distance if parent is node 0 (time 2
1), bottom branch.” We add this 4.85  to the 0.02 number that we gave node 0 
(time 1) in Figure 8.15(b), for a grand total of 4.87. 

3. If we started at node 1 (time 1) and moved to node 0 (time 2) using the top 
branch, the second output symbol would be (0, 1). Comparing this to r where the 
second sent signal is r2=(1.1, 0.1), we say “d = 2.02 distance if parent is node 1 3 
(time 1), top branch.” We add this 2.02 to the 0.5 number that we gave node 1 
(time 1) in Figure 8.15(c), for a grand total of 2.52. 
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2r =(1.1, 0.1) 

time 1 time 2 

0.02 

0.5 

s0=(1,0) 

s4=(–1,0) 

s 2=(0,1) 

s6=(0,–1) 

node 0 (time 2) 

0.02 

0.5 

Figure 8.16	 Moving through the trellis using the VA (from time 1 to time 2). 
Only movement to top node is drawn. 

4. If we started at node 1 (time 1) and moved to node 0 (time 2) using the bottom 
branch, the second sent symbol would be (0, –1). Comparing this to r where the 
second output symbol is (1.1, 0.1), we say “d = 2.42 distance if parent is node 1 4 
(time 1), bottom branch.” We add this 2.42 to the 0.5 number that we gave node 0 
(time 1) in Figure 8.15(b), for a grand total of 2.92. 

Since node 0 (time 1) to node 0 (time 2), along the top branch, creates the small­
est total (0.04), we proclaim node 0 (time 1) and the “top” branch the best parent and 
branch. 

We continue this process for node 1 (time 2), node 2 (time 2) and node 3 (time 2). 
And that ends our next move from left to right through the trellis. 

We repeat the process at time 3, and then at time 4. Now, at the end, we have four 
end nodes with four numbers. For example, end node 0 (time 4) comes with value 
0.08. We choose the end node with the smallest value. 

From here, we know the history of parent nodes and branches, so we can “back­
track” through the trellis, and determine the s′ and the m′. And we’re done. 

In our case, we choose node 0 (time 4) with a final value of 0.08, and we “back­
track,” leading us to the path shown in Figure 8.14. This leads us to the output m′ = 
(00 00 00 00 00). 

Now you know how the TCM decoder works to undo the effects at the transmit­
ter side and correct bit errors along the way. 
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Problems


1. You want to build a TCM system that is to use the convolutional coder of Figure 
Q8.1 and the modulation scheme of Figure Q8.2. 

(a) Draw the trellis diagram representing the convolutional coder. 

(b) Assign modulation symbols to output bits by using mapping -by -set

-partitioning. Provide a complete trellis diagram including modulation

outputs.


(c) Draw the TCM decoder front end. 

(d) Given A = 1 and that the output of the TCM decoder front end is (0.7, 0), 
(1.2, 0), (3.3, 0), (1.2, 0) use the Viterbi Algorithm to determine the output 
of the TCM decoder. 

m1 u1 Figure Q8.1 
Convolutional coderu2 

m2 

u3 

+ 

+ 

2 bits input 3 bits output 

φ2 (t) Figure Q8.2 
8 outputs of modulator 

φ1(t)x x x x

x

x

x

x

5 4

3A 

6

0 1

2

3

A 

7 
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2. Consider the convolutional coder of Figure Q8.3. Assume that the modulation 
is 32-ASK. Using your understanding of trellis diagrams and mapping-by-set 
partitioning, draw a trellis diagram that includes the output of the modulator. 

m1 u1 Figure Q8.3 
Convolutional coder 

+

m4

m3 

u4

u3

m2 u2

+ 
u5 

input bits output bits 

3. Provide a trellis diagram and a block diagram that fully describes a TCM coder 
meeting the following criteria: 

• The channel coder must have 1 bit input and 2 bits output; 

• The modulation scheme must be QPSK. 

4. Describe the benefits of using the TCM of Figure Q8.1 in place of using the 
same convolutional coding followed by a 4-PSK modulator. 





9 
Chapter 

Channel Filtering and 
Equalizers 

In Chapter 5, we talked about using modulators to map bits m to a signal s(t) that 
could be sent over the channel. We saw that the channel added a noise n(t) to the 

sent signal, giving the receiver the noisy r(t) = s(t) + n(t). We took this a step further 
when we talked about demodulators, which, given r(t) = s(t) + n(t), did their best to 
regenerate the original bit sequence m. 

Now we take this even further. This time we’ll consider something called pulse 
shaping at the modulator. Modulators still take bits m and turn them to a signal s(t)— 
we just consider a more general way to do this. We can now talk of channels that do 
two things—add a noise and do a filtering c(t), giving the receiver r(t) = c(t) ∗ s(t) + 
n(t). We’ll also spend some time talking about what goes on at the receiver, which is 
called equalization. 

9.1  Modulators and Pulse Shaping 

Consider the modulators we talked about in Chapter 5. We talked of ASK, PSK, and 
QAM (as well as FSK, but we’ll leave that one out for now). Look over to the QPSK 
modulator in Figure 9.1(a) for a refresher. In Figure 9.1(b), we see that in comes 
m = (10 00 10 10 00), and out goes the waveform s(t). We can express the modulator 
output, such as this QPSK output, mathematically according to 

( ) = s  t  ( ) + s  t  ( ) + s  t  s t  0 ( ) + s  t  ( ) + s  t  4 ( )  (9.1)1 2 3 

( ) = A0 cos (ω  + θ  0 )π( ) + A cos (ω  + θ  π(t  T  ) + A cos (ω  + θ  )π(t − 2T )s t  ct t 1 ct 1 ) − 2 ct 2 

+ A3 cos (ω  + θ  π(t − 3T ) + A cos (ω  + θ  )π(t − 4T )ct 3 ) 4 ct 4 

(9.2) 

4 

s t  c i ) −( ) = ∑ Ai cos (ω t +θ  π (t  iT ) (9.3) 
i=0 
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QPSK 

in out 

0 0 Acos(ωct + 0), iT<t<(i+1)T = Acos(ωct + 0)π(t–iT) 
0  1 Acos(ωct + π/2), iT<t<(i+1)T = Acos(ωct + π/2)π(t–iT) 
1 0 Acos(ωct + π), iT<t<(i+1)T = Acos(ωct + π) . π(t–iT) 
1 1 Acos(ωct + 3π/2), iT<t<(i+1)T = Acos(ωct + 3π/2) . π(t–iT) 

(a) 

QPSK 

in: out: 

m = 10 00 10 10 00 10 00 10 10 

s(t) = 

Accos(ωct + π) Accos(ωct) Accos(ωct + π) Accos(ωct + π) Accos(ωct) 

s0(t) s1(t) s2(t) s3(t) s4(t) 

0 T 2T 3T 4T 

(b) 

Figure 9.1  Describing a modulator using QPSK as an example 
(a) input-output relationship

(b) input-output example

00 
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4 

s t  i
jθi jω t( ) = ∑Re{A e e  c }π (t − iT  ) (9.4)

i=0 

 When you write what comes out in this way, it indicates a simple way to build the 
modulator. For example, the QPSK modulator can be built as shown in Figure 9.2. 
Here, bits come in and they are mapped by a coder to a complex amplitude indicating 

j ithe A e  θ value. This is then passed through what is called the pulse shaper, which i j ij iturns the information A e  θ  into the shape A e θ π (t − iT  ) . Finally, we multiply this 
e 

i i

j t 
by ωc  and take the real part, and, voila, for ever y two bits that come in we’ve got

jθi jω tRe{A e e  c }π (t − iT  ) coming out.i

ejωct 

Symbol, Ii = Aiejθi Aiejθi π(t–iT) 

bits 
0 0  Aej0 

0 1  Aej π/2 

1 0  Aejπ 

1 1 Aei 3π/2 

m = (10 00) symbols = (Aejπ Aej0) signals = Aejπ π(t) + Aej0π(t–1T) s(t) = ∑ Re{Ae
1 

coder x Re { . }
pulse 

shaper 
π(t) s(t) 

jθi ejωct} . π(t–iT)
i=0 

Figure 9.2 Construction of modulator (e.g. QPSK) 

Now, examine the modulator shown in Figure 9.3. It is identical in every way to 
the modulator in Figure 9.2, with one exception. The pulse-shaping filter, which was 
previously π(t), is changed to g(t). As a result, the output of the modulator is now 

L−1 
jθi jω t (s t  i( ) = ∑Re{A e e  c }g  t  − iT  ) (9.5) 

i=0 

L−1 
j t  (s t  i 
ωc }g  t  − iT  ) (9.6)( ) = ∑Re{I  e  

i=0 

j iwhere g(t) may be any shape you’d like, and I  is shorthand for A e  θ . So far in all thei i
modulators we’ve looked at, we’ve used g(t) = π(t). Soon, as you read on, you’ll see that 
will be a reason for using a different g(t). But for now, simply know that you have a 
new way to build modulators and an easy way to generalize them. 
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jωct 

pulse 
shaper 

new 

g(t)	

e

coder 
Aiejθi g(t–iT)bits Symbol, Ii = Aiejθi 

Re { . }x 
s(t) 

0 0	 Aej0 

Aejπ/20 1 
Aejπ1 0

Aej3π/2
1 1 

Figure 9.3 Construction of new modulator with different pulse shaper 

Example 9.1 

Consider a BPSK modulator. Express the output of a BPSK modulator in an 
equation that looks similar to Eq. (9.6). 

Solution: For starters, let’s consider the output of a BPSK modulator at one 
time. It looks like 

s t  t i )	 −( ) = Acos (ω  + θ  π(t  iT )	 (E9.1)i c 

where 

Dθ = 0D or 180	 (E9.2)i

Now, in a more general form (we can generalize the pulse shape), we write 
this equation according to 

s t  t i (	 −( ) = Acos (ω  + θ ) g t  iT )	 (E9.3)i c 

Applying a little bit of math to the output of a BPSK modulator, we end up with 

s t  jθi jω t ( −( ) = Re{Ae  e  c }g t  iT )	 (E9.4)i

Now, if we consider the output at a whole bunch of times, we have 

L−1 

s t  jθi jω t ( −( ) = ∑Re{Ae  e  c }g t  iT )	 (E9.5) 
i=0 

L−1

ωc
s t  i 

j t  ( −( ) = ∑Re{I e  }g t  iT )	 (E9.6) 
i=0 
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where 

Ii = Ae jθi = Ae j0D or Ae j180D (E9.7) 

9.2 The Channel That Thought It Was a Filter 

We have just re-expressed the modulators that we saw in Chapter 5—in fact, we’ve 
found a way to generalize them somewhat. In Chapter 5 we also saw channels. Those 
channels added a noise, and the channel was modeled as shown in Figure 9.4(a). We 
are now going to present a new channel, a more general model. A channel may do 
more than add a noise—it may act as a filter c(t) and add a noise n(t). In this case, the 
channel is modeled as shown in Figure 9.4(b). 

channel 
filter 

+ 

+ 

new 

r(t) = s(t) + n(t) 

r(t) = s(t) * c(t) + n(t)s(t) 

s(t) 

n(t) 

c(t) 

(a) 

(b) 

The Channel 

The Channel 

n(t) 

Figure 9.4 
(a) Channel model seen so far  (b) New channel model 

Let’s say we have our new modulator from Figure 9.3, and the signal s(t) out of 
this modulator is sent across the channel, which acts as a filter, as shown in Figure 
9.4(b). We therefore have the system shown in Figure 9.5. Let’s evaluate the channel 
output r(t): 

r t) = s t  ∗ c t  (( ( )  ( ) + n t  ) (9.7) 
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coder Re { . } 
bits 

pulse 
shaper x 

n(t) 
r(t)g(t) 

channel 
filter 
c(t) 

+ 
Ii = Aiejθi 

ejωct 

new modulator new channel new 
received 
signal 

Figure 9.5 New modulator and new channel 

Here, r(t) is the sent signal passed through the channel filter with a noise added 
on to it. Plugging in the value for s(t) coming out of the modulator in Equation (9.6) 
leads us to 

L−1

ωc
r t  i 
j t  ( − ( ) + n t  ( ) = ∑Re{I e  }g t  iT )∗ c t  ( )  (9.8) 

i=0 

or, using properties of convolution, 

L−1

ωc
( ) = ∑Re{I e  }h t  iT ) + n t  ) (9.9)r t  i 
j t  ( − (


i=0


where h t  ( )∗ c  t  E ( )
channel filter c(t) shifted in frequency so that it is centered around 0 Hz. That is, the 
channel, through its filter c(t), reshapes the transmitted pulses, changing the shape 
from g(t) to h(t), and it adds a noise n(t). 

( ) = g t  E ( ) and c t is the baseband filter corresponding to the 

Example 9.2 

Determine the output of a channel that performs a filtering and adds a noise given 

•   the channel filter is described according to 

( ) = δ( ) + δ(t − τ) (E9.8)c t  tE

•  the modulator used is a BPSK modulator. 

Solution: Using equation (9.9), we have 

L−1

ωc
( ) = ∑Re{I  e  }h t  iT ) + n t  ) (E9.9)r t  i 

j t  ( − (

i=0
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where 

h t  ( )∗ c  t  ( ) = g t  E ( )  (E9.10) 

Using the information about the channel in Equation (E9.8) leads us to the 
result 

( ) = g t  )∗  δ( ) + δ(t − τ) (E9.11)h t  (  t 

h t  ( (( ) = g t  ) + g t  − τ) (E9.12) 

Applying this to equation (E9.9) leads to 

L−1 

r t  i 
j t  

 ( ) − g t  − τ) + n t  ( ) = ∑Re{I  e  ωc } ⋅ g t  (  ( )  (E9.13) 
i=0 

Knowing that the modulator is BPSK further tells us (from Example 9.1) that 

jθi D DIi = Ae where θ  =  0 or 180 (E9.14)i 

Equation (E9.13) and (E9.14) together describe the output of the channel filter. 

9.3 Receivers: A First Try 

We now have a general form for the modulators we’ve been studying. We know if we 
send the signal s(t) across a channel that does a filtering, we get out (at the receiver 
side) the r(t) of Equation (9.9). At the receiver side, the job at hand is this: take the r(t) 
coming in, and figure out m′, a best guess of the original bits m that were sent. Alter­
natively, if we can come up with I′, a good guess on the coder outputs I = (I0, I1, ...), we 
can figure out m′. So we’ll say that the task of the receiver is to come up with I′, as 
good a guess as possible on the value of I. 

The receiver I’ll describe here won’t turn out to be the best receiver you can use, 
but it will be a useful one in helping us understand the problems a receiver faces when 
it picks up a received signal r(t) of Equation (9.9), a signal that includes channel 
filtering. 

9.3.1  The Proposed Receiver 

Take a look at the receiver in Figure 9.6. It takes the incoming signal r(t) and first 
multiplies it on top by a cosine and on the bottom by a sine. This leads to two signals 
which are fed into a filter f(t), which passes frequencies around 0 Hz but cuts out 
higher frequency terms. 
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cos(ωct) 

rc(t)


kT


r(t) 

x 

f(t) 

x 

device 
Decision 

∧ 
Ik 
orr′(t) r″(t) rk 

bits rs(t)


sin(ωct)


Figure 9.6 Proposed receiver for new r(t) 

First, the multiplication by a cosine leads to (after about three lines of math): 

L−1 

r t  I  h t  iT ) + n t  ( ) = ∑Re{  } ( − c ( ) 

i=0


c i 

( )) 
(9.10) 

+ (high frequency terms that will be cut out by f t  

and the multiplication by a sine leads to (after a different three lines of math) 

L−1 

r t  I  h t  iT ) + n t  ( ) = ∑ Im{  } ( − s ( ) 

i=0


s i 

( )) 
(9.11) 

+ (high frequency terms that will be cut out by f t  

where n t t  c ( ) = n ( )sinω t .( ) = n( )cos ω t and n t  tc s c 

To simplify the presentation and not have to bring two different signals with us in 
the rest of our discussion, we can represent this as a single complex signal, namely 

′( ) = r t  s ( )  (9.12)r t  c ( ) + jr t  

which leads to 

L−1 

r t  Ii I  h t  iT ) + n t  ( ) ′( ) = ∑Re{  }+ j Im {  } ( − c ( ) + jn t  i  s

i=0
 (9.13) 
+ (high frequency terms ) 
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L−1 

r t  i ( − ′( )′( ) = ∑ I h t  iT ) + n t  
i=0 

( )) 
(9.14) 

+ (high frequency terms that will be cut out by f t  

where n t  c ( ) + jn  t  ′( ) = n  t  ( ) . This is the signal we show entering the channel filters 
f(t). The multiplication by sine and cosine in essence: (1) removes the ω t  term from c
the received signal (that is, returns the signal to baseband); and (2) allows us to write 
the signal in a handy complex notation. 

Next, we apply the filter f(t). This leads to 

L−1 

r t  i ( − ( ′( )∗ f t  ′′( ) = ∑ I h t  iT )∗ f t  ) + n t  ( )  (9.15) 
i=0 

L−1 
′′( ) = ∑ I x t  iT ) + n  t  r t  i ( − ′′( )  (9.16) 

i=0 

( ) = h t  )∗ f t) = g t  c  t  ( ) and n t  ′( )∗ f t  where x t  ( ( ( )∗ ( )∗ f t  ′′( ) = n t  ( ) . This tells usE 
that our sent signal, after passing through a channel filter and having noise added on 
to it, and then passing through a receiver filter f(t), basically is the sent signal with the 
combined effects of the filtering and the noise. 

We now sample the signal at times kT (k = 0, 1, 2, ...). At time kT, we end up with 
the output rk which corresponds to 

L−1 

rk = ∑ I x kT  iT ) + ni ( − k (9.17) 
i=0 

where nk = n  kT′′ ( ) ; or, taking the kth term out of the sum, we can write this as 

L−1


0 i ( −
rk = I x  ( ) + ∑ I x kT  iT ) + n 
(9.18)k k


i=0

i k 
≠ 

Desired Intersymbol Noise 
Information Interference (ISI) 

(The decision device is exactly the same one we built in Chapter 5, taking in an rk 
and putting out a guess on the symbol sent.) 
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9.3.2 Making the Receiver a Good One 

We’d like to have the receiver work so that it creates rk = Ik ; in other words, we’d like 
for the kth received sample from the sampler in Figure 9.6 to correspond exactly to the 
kth information symbol sent at the transmitter. If we could do that, then the decision 
device would, given rk = Ik , always make the correct decision on I . Looking at Equa­k 
tion (9.18), let’s see what it would take to make rk = Ik . It would take three things: 

1. x(0) = 1 

2. x(kT – iT) = 0, k ≠ i 

3. nk = 0. 

We can’t make the noise nk = 0, but recall that x t  ( )∗ ( )∗ f t  ( ) = g t  c  t  ( ) , and g(t)E 
is a filter put in at the transmitter, while f(t) is a filter we put in at the receiver. Since we 
control g(t) and f(t), we can control x(t). So, we could choose g(t) and f(t) such that 

x t  ( )∗ ( )∗ f t  
1, t =

= 
0 

− ( ≠E (9.19)( ) = g t  c  t  ( ) =

0, t kT  iT k  i  ) 

which means we would satisfy points 1 and 2 above. If f(t) and g(t) are selected such 
that x(t) satisfies Equation (9.19), x(t) and/or the communication system is said to 
satisfy the Nyquist criteria for zero ISI (intersymbol interference). Here are some 
choices for x(t) that satisfy Equation (9.19). 

The sinc scenario: The first well-known choice for x(t) that satisfies Eq. (9.19) is 

 πt  
   

sin  T tx t( ) = sinc   = 
πt   (9.20)T

T


A plot of this x(t) is shown in Figure 9.7(a). In the frequency domain, this signal is 
shown in Figure 9.7(b). 

The raised cosine scenario: Another well-known choice for x(t) is called the raised 
cosine function, in which case x(t) corresponds to 

 πt   t  

α ( ) = 
sin 

π
 

t
T  

⋅ 
cos  πα


( ) = RC  t   T
t 2 



x t  

(9.21)
− α21 4T T 2 

where α is called the roll-off factor and corresponds to a value between 0 and 1. Three 
raised cosine functions are shown in Figure 9.8(a), and their frequency response is 
shown in Figure 9.8(b). 
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sin (π t/T) 

0–T–2T T 

1 

2T 3T 
t 

x(t) = sinc(t/T) = 
π t/T 

(a) 

X(f) = F{sinc(t/T)} 

f 
–1/2T 

1/2T 

(b) 

Figure 9.7 x(t) = sinc (t/T): (a) in time and (b) in frequency 

–2T 2T–T T0 
t 

α = 1 (....) 
α = 0.5 (--) 

α = 0 (__) 

x(t) = RCα (t) 

(a) 

x(f) = F{RCα (t)} 

α = 1 

α = 0 

α = α 

–1/T –1/2T(1+α) –1/2T 
1/2T 1/2T(1+α) 1/T 

(b) 

Figure 9.8 x(t) = RCααααα(t): (a) in time and (b) in frequency 
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9.3.3 The Proposed Receiver: Problems and Usefulness 

Let’s look at the receiver that we’ve been discussing so far. It’s shown in Figure 9.6, 
and we figured out that the r 

k
 value is: 

L−1


0 k
rk = Ik x ( ) + ∑ Ik x (kT  − iT  ) + n 
(9.22)i=0


i k 
≠ 

t twhere nk = n′′(kT  ) = n′( )∗ f ( )  . We also saw that if we chose f(t) and g(t)t =kT  
carefully, we could make sure that the x(t) was such that x(0) = 1 and x(kT – iT) = 0, 
which would lead to 

rk = Ik + nk (9.23) 

t twhere nk = n′′(kT  ) = n′( )∗ f ( )  . This looks great. We’ve now been able to gett =kT  

the receiver to produce a kth sample that has in it the kth information symbol I 
k 

and 
some noise n . 

k 

But there are problems with the noise nk. This noise corresponds to 
nk = n′′(kT  ) = n′( )∗ f ( )t t . Now, f(t) was chosen to make x(t) satisfy the Nyquistt =kT  
criteria; we made no effort to consider how f(t) would affect the noise. Indeed, f(t) 
could cause dramatic noise amplification, making the information Ik lost in the sea of 
loud noise nk. So, generally speaking, this receiver of Figure 9.6 is not used in its 
current form, except...it does have one really nice use: when the channel filter c(t) is 
flat over the transmission frequency—that is, when c(t) has a frequency response C(f) 
such as that shown in Figure 9.9. In this case, the channel C(f) = 1 for all intents and 
purposes, as long as we make sure all the transmit frequencies fall in the flat part of 
C(f). For all practical purposes, the channel can be modeled as c t  ( ) .( ) = δ tE

C(f) = frequency response 

of channel filter


f 

1 

fc 

flat over range 
of transmission 

Figure 9.9 A possible channel filter c(t) shown in the frequency domain 
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In this case, for the modulator and receiver we’re considering, we have an r 
k 

equal to 

L−1 

rk = I  x  ( ) + ∑ I x kT  iT ) + nk 0 i ( − k (9.24) 
i=0 

( ) = g t  ( )∗ f  t  ( )∗ f  t  where this time x t  ( )∗ c  t  ( ) = g t  ( ) , and, as before, E 
nk = n  kT  ′′(  ( )∗ f  t  ′′( ) with n kT ) = n t  ( ) t kT  .= 

If we want to tr y to make r 
k
 as close as possible to I , then we’ll make sure that 

k

x t  ( )∗ f  t  
1, t =

= 
0 

− ( ≠ (9.25)( ) = g t  ( ) =

0, t kT  iT  k  i  ) 

If we do this and also make sure g(t) = f(t), it can be shown (with a bit of statistical 
wrangling) that we not only make x(0) = 1 and x(kT – iT) = 0, but also this f(t) does not 
cause noise amplification. 

This receiver is therefore a popular choice whenever the channel is “flat” over the 
range of transmission frequencies. 

Example 9.3 

Assuming a flat channel, figure out a possible g(t) and f(t) so that there is no ISI 
in the received signal r 

k 
. 

Solution: Equation (9.24) shows us the received r 
k
 when the channel is flat. If 

we want to get rid of ISI (the middle term), all we have to do is make sure that 
x(t) = g(t) ∗ h(t) satisfies Equation (9.25). 

The easiest way to find a g(t) and h(t) that satisfy Equation (9.25), the easiest 
way is to find an x(t) = g(t) ∗ h(t) that satisfies 

πtsin 
( ) = g t  ∗ h t  

(E9.15)
x t  ( )  ( ) =

πt
T 

T 

To solve for the g(t) and h(t) from here, turn to the frequency domain, where 
we find out that we can write Equation (9.25) according to 

 −1 1

X f  ( ) ⋅ F  f  ) =  

f
( ) = G  f  ( 1, 
2T

≤ ≤  
2T (E9.16)

0, else 
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One solution to this equation is to let 

 −1 1 
G f  ( 1, ≤ ≤( ) = F f  ) =  2T

f 
2T (E9.17)

0, else 

Turning this back to the time domain we end up with 

πtsin 
( ) = f t  g t  ( ) = 

πt
T 

(E9.18) 

T 
So, here is one possible g(t) and h(t) that satisfies Equation (9.25), insuring 

that in a flat channel we get no ISI. 

9.4 Optimal Receiver Front End 

So far, we considered one example of a possible receiver, shown in Figure 9.6. This 
receiver explains the idea of a receiver filter f(t) and how it can be used to remove 
intersymbol interference (ISI).  In the case where the channel is “flat” over the frequen­
cies of transmission, that receiver actually turns out to be the optimal receiver. But in 
other cases, that receiver causes noise amplification, and may not be a very good one. 
You need alternatives! You need choices! You’ll want to know how to build the ver y best 
receiver possible. That’s why this section is here—to tell you exactly how to build the 
optimal receiver front end, which is the first part of the optimal receiver. 

We start at our receiver with the input 

L−1 
ωc( ) = ∑Re{I e }h t  iT ) + n t ) (9.26)r t  i

j t  ( − (

i=0


( ) = g t  c  t  where h t  ( )∗ E ( ) . Without any loss of information, we can map this r(t) signal
j tcto a signal without the carrier e ω . We do this by multiplying the r(t) by a cosine and 

then by a sine, as shown in Figure 9.10. This leads to the outputs (which we saw earlier) 

L−1 

r t  I  h t  iT ) + n t  c ( ) = ∑Re{  } ( − c ( )i 
i=0 (9.27) 
+ (high frequency terms which will be cut out in a moment ) 
L−1 

r t  I  h t  iT ) + n t  ( ) = ∑ Im{  } ( − s ( )s i 
i=0 (9.28) 
+ (high frequency terms which will be cut out in a moment ) 
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cos(ωct) 
rc(t) 

r(t) 

r′(t) 

rs(t) Figure 9.10 
sin(ωct) The first part of an optimal receiver front end 

x 

x 

where n t t  c ( ) = n ( )sinω t( ) = n( )cos ω t and n t  tc s c 

To simplify the presentation and keep us from having to bring two different 
signals with us in the rest of our discussion, we can represent this as a single complex 
signal, namely 

r t  c ( ) + jr t  ′( ) = r t  s ( )  (9.29) 

which leads to 

L−1 

r t  Ii I  h t  iT ) + n  t  ( ) ′( ) = ∑Re{  }+ j Im {  } ( − c ( ) + jn t  i  s 
i−0 (9.30) 

+(high frequency terms, cut out in a moment ) 
L−1 

r t  i ( − ′( ) + (high frequency terms, cut out in a moment )′( ) = ∑ I h t  iT ) + n t  
i−0 

(9.31) 

′( )= s t  ′( ) +(high frequency terms, cut out in a moment )r t  ′( )  + n t  
(9.32)

L−1 

where n t  c ( ) + jn t  ′( ) = ∑ Ii h t  iT ) . ′( ) = n t  ( ) and s t  ( −s 
i=0 

Now, each Ii = Aie
jθi is one of a finite number of values (one of M values, to be 

exact, because Ii represents the output from the coder, which takes in n bits and 
outputs one of M = 2n possible Ii ’s. See Figure 9.3 for an illustrative example.) That 

L−1 

means that s t  ( −′( ) = ∑ Ii h t  iT ) is a time function that is one of a finite number 
i=0 

of time functions (one of ML possible time functions to be exact). So we have 
L−1 

r′(t) = s′(t) + n′(t), where s t  ( −′( ) = ∑ Ii h t  iT ) is one of a finite number of time functions. 
i=0 
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If you look back to Chapter 5, we saw there that: 

if you receive r(t) = s(t) + n(t), where s(t) takes on one of a finite number of 
values, M values, to be exact, 

then an optimal receiver front end is the one shown in Figure 9.11(a). 

So, now that we have r ′ (t) = s′(t) + n′(t), where s′(t) takes on one of a finite num­
ber of values (one of ML values), then an optimal receiver front end for r ′ (t) must be 
the one shown in Figure 9.11(b). 

s1(t) 

x 

r(t) = s(t) + n(t) 

x 

sM(t) 

∫ 

∫ 

u1 

uM 

(a) 

cos ωct s′ 1 (t) 

x 

r′(t) x 

x 

x 
= s′(t) + n′(t) 

∫ 

∫ 

u

r(t) 

uML 

sin ωct s′ ML(t) 

(b) 

Figure 9.11 
(a) Optimal receiver front end for received signal of Chapter 5, namely r(t) = s(t) + n(t) 

(b) Corresponding optimal receiver front end for received signal of Chapter 9:
(1) first creating r′′′′′(t) = s′′′′′(t) + n′′′′′(t), then (2) using receiver front end analogous to (a) 

1 
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Of course, nobody wants to build the receiver front end shown in Figure 9.11(b) 
because there are ML branches, which can be quite a lot. But, this did give some smart 
engineer an idea—namely, to take a closer look at that u 

k
 coming out of the receiver 

front end of Figure 9.11(b). That u 
k
 corresponds to: 

t sk ′ t  dt  (9.33)uk = ∫ r ′( )  ( )  

L−1 

uk = r ′( )∑ I  h  t  − iT  dt  (9.34)∫ t i  k  ( ),

i=0


L−1


uk = ∑ Ii  k  ∫ r ′( ) (  ) 
t  h  t  − iT  dt  (9.35),

i=0


L−1 

uk = ∑ I , ri ′ (9.36)i  k 

i=0


t  h  t  − iT  dt  . If we have ri′  (for i = 0,1,...,L – 1), we could generate 
ever y uk we want. We don’t have to build a receiver front end as big as the one of 
Figure 9.11(b)—all we have to do is build one that provides the value of ri′  for 
i = 0, 1, 2, ..., L–1. If we can do that, then from this receiver front end we have the 
values needed to build the receiver front end of Figure 9.11(b) if we want it—or any 
other important receiver we want to build, for that matter. 

Take a look at Figure 9.12. From this receiver front end, r(t) is mapped to r′(t) by 
the cosine and sine multiplication; then with r′(t) coming into the filter and sampler, ri ′ 
comes out—like this: 

Let Oi= output of filter and sampler at sample time i; then 

where ri′= ∫ r′( ) (  )  

Oi = r ′( )∗ h(−t)t (9.37)t=iT  

Oi = r ′( )h(J − t  d  J∫ J ) (9.38)t=iT  

Oi = r ′( )h(J − iT  d  J (9.39)∫ J ) 

Oi = ri ′ (9.40) 

Figure 9.12, then, is our receiver front end. It takes in r(t) and it puts out ri′ , 
i = 0, 1, 2, ..., L – 1. With these values ri′ , we have all the numbers we need to generate 
any values we might want in our receiver. 
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cos ωct

rc(t)


r(t) 

x 

r′(t)x 

h(–t) 

kT ri ′ 

rs(t) 

sin(ωct) 

Figure 9.12  Optimal receiver front end 

9.5 Optimal Rest-of-the-Receiver 

We’ve gone from the new modulator, through the new channel that put out the new 
r(t), and through a receiver front end which outputs ri′ . You can see it all together in 
Figure 9.13. Now let’s build the optimal “rest-of-the-receiver,” which puts out m′ , the 
best possible guess on the transmitted bits m. 

RECEIVER 
TRANSMITTER CHANNEL FRONT END 

coder Re { . } 

(bits) 

pulse
shaper x 

n(t) 

g(t) 
c(t) + 

s(t) r(t) 
rk ′ 

h(–t) 
m 

ejωct 
cos ωct 

sin ωct 

kT 

x 

x 

Figure 9.13  The new modulator (transmitter) with pulse shaping, followed by the new 
channel (with a channel filter), followed by the optimal receiver front end 

9.5.1 The Input

Coming into what I’m calling the rest-of-the-receiver is the value: 

rk′ = r ′( )h (t − k  T  )d  t  (9.41)t∫ 
Let’s take a more careful look at rk′ , and see what we’ve got to work with. Here 

comes the math that allows us to better understand rk′ . Taking the rk′  of Equation 



Channel Filtering and Equalizers �  263

L −1 

(9.41), and substituting in r t t t  i ( t′( ) = s′( ) + n′( ) = ∑ I h t − iT ) + n′( ) , we end up with 
i=0


L−1 
 
rk ′ =  I  h t  − iT )+ n′(t) ⋅h t  − kT dt (9.42)∫ ∑ i ( ( )

 i=0  

L−1 

i ( ) ( ) ∫ ) ( )r ′ = ∫ ∑ I  h t  − iT h t − kT dt + n′(t  h t  − kT dt (9.43)k

i=0


L−1


k ( ) ( )
r ′ =∑ Ii ∫ h t − iT h t − kT dt + nk (9.44) 
i=0 

L−1 

r ′ =∑ Ii ∫ h t  h t  −(k − i T dt + nk ( ) ( ) ) k (9.45) 
i=0 

t h t − kT dt . Look at the integral in Equation (9.45). Let’s 

( ) = g t t ( )∗ h (−t ) = h (τ )h t −τ τ . From a 

where nk = ∫ n′( ) (  )  
compare it to x t  ( )∗c ( )∗ h (−t ) = h t ∫ ( )dE 
brief look at the integral of Equation (9.45) and x(t), you’ll be able to understand what I 
mean when I write: 

L−1 

r ′ =∑ Ii x((k − i T )+ nk ) k (9.46) 
i=0 

which, letting xk i = x ((k − i T )can be rewritten as− ) 
L−1 

rk ′ =∑ Ii xk −i + nk (9.47) 
i=0 

There are two other ways we can express this rk′ . The first is a shorthand nota­
tion from digital signals and systems literature, which tells us we can write rk′ 
according to 

r ′ = Ik ∗ xk + nk (9.48)k 

where Ik ∗ xk denotes the sum of Equation (9.47) and represents a discrete-time 
convolution. The second way we can write the rk ′ of Equation (9.47) is to write out the 
sum longhand, leading to 

r ′ = ( I x + I1 xk−1 + … + Ik−1 x )+ Ik x0 +(Ik +1 x− 1 + Ik + 2 x− 2 + … + IL−1 xk−( L−−1))+ nkk 0 k 1 

(9.49) 
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That is to say, the output we are seeing, rk′ , corresponds to the output generated 
by the shift register, multiplier, and adder shown in Figure 9.14. There, the I ’s arei 
stored in a shift register of length L, and each Ii is multiplied by xk i− ; then they are all 
added together and a noise is added onto them. 

I0 I1 Ik IL–2 IL–1 

+ 
+ r′ k 

xk x0 xk–(L–2) 

xk–(L–1)xk–1 

. . . . . . 

. . . . . . xxxxx 

nk 

Figure 9.14 Illustrating pictorially the value of rk ′′′′′ coming out of the receiver front end 
and into the “rest of the receiver” 

9.5.2 A Problem with the Input, and a Solution 

There is a problem with rk′ , something that it makes it ver y hard to build an optimal 
rest-of-the-receiver. We have that 

L−1 

rk ′ =∑ Ik xk−i + nk (9.50) 
i=0 

where nk = n t h t − kT )dt. Herein lies our problem. The n(t) in the n 
k 

n 

integral is additive white Gaussian noise, and it is filtered by h(–t) (that is, integrated 
with h(t – kT)). The output, n 

k 
, can be shown to be a Gaussian random variable that is 

correlated with noise samples at other times—that is, n 
k 

is correlated with n 
k –1 and 

k–2 , and so on, as well as being correlated with n and n 
k +2 , and so on. This noise 

∫ ( ) (  

k +1 
correlation makes building an optimal receiver a ver y difficult and complicated task. 
It’s a problem engineers are still working to resolve. 
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But there is a way around this problem. We can introduce another filter, a digital 
filter called a whitening filter, w 

k 
, so that, after passing r′  through w 

k 
, we end up withk

rk = ∗  =(I ∗  +  ∗  w (9.51)rk ′ wk k xk nk ) k 

rk = Ik ∗  ∗  wk )+  ∗  w (9.52)(xk nk k 

rk = Ik ∗  +  n′ (9.53)vk k 

where n′ = nk ∗ wk is now a Gaussian random variable that is independent of all otherk 
Gaussian random variables nk ′+1, n′ , and so on. That is, we can filter out the depen­k+2 
dence of the random noise on other random noise samples using a filter w 

k 
. 

It really doesn’t ser ve us to go through the details of how we construct the 
whitening filter w 

k 
, as it all comes out of statistical literature, and other texts delight in 

sharing that with you. Let’s just get right to the key result (how to build the whitening 
filter!), so we have what we need to keep surging ahead with our construction of the 
optimal rest-of-the-receiver. 

For this one paragraph, I’m going to assume some knowledge of discrete time 
processing. If you don’t have it, this paragraph may be hard to understand, and in that 
case (if this paragraph is important to you) you’ll want to take a look at a book on 
discrete time processing. The whitening filter wk is obtained from the equation 

2 1jω )W e  =( jω ) (9.54)X e( 
jAny W(e ω) that satisfies Equation (9.54) will do, although it is conventional 

jwisdom to choose the W(e ω) that is also causal and stable (that is, all poles fall within 
the unit circle). 

So, the first step in the optimal rest-of-the-receiver is adding a whitening filter w 
k
 . 

This filter changes the noise samples for us—it makes each noise sample independent 
of other noise samples, which is key in building an optimal receiver. (Engineers still 
are unsure of ways to build optimal receivers otherwise.) 

9.5.3 The Final Part of the Optimal Receiver 

So far, we’ve built the optimal receiver front end, which receives r(t) and puts out 

r ′ = Ik ∗  +  nk (9.55)k xk 
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We realized we had a problem with r′ , with the noise samples at time k, n 
k 
. Thisk

noise is a random variable that depends on other noise samples at other times (for 
example, n 

k+1 ). So we put in a filter called a whitening filter which took in r ′ and putk 
out r , where 

k 

L−1 

rk =  ∗  +  = ∑ I vk i  + n′Ik vk nk ′ i − k (9.56) 
i=0 

and n′ is a random variable that is independent of other noise samples at other timesk
(for example, n′  ). From here, we are ready to build the final part of the optimal k+1 
receiver.  To start, we take a better look at r 

k
 . First, if we write out the sum in long­

hand, we find that we can rewrite r 
k
 in the following form: 

rk = (I vk + I vk−1 +  +  I  v  ) + I v  0 1 … k−1 1 k 0 

(9.57)+ (I vk+  −  1 + Ik+2 v−2 +  +  IL−1 vk L  ) + nk ′ 1 … − −1)( 

Now, that means we can visualize r 
k
 being built as shown in Figure 9.15. There, 

we have the Ii ’s being stored in a shift register; each Ii is multiplied by vn – i, and then 
these are added together. Finally, the noise is added on. 

I0 I1 Ik IL–2 IL–1 

+ 
+ 

vk 

vk–1 

v0 vk–(L–2) 

rk 

. . . 

x x x x x 

vk–(L–1) 

. . . 

nk ′ 

Figure 9.15  Illustrating the creation of rk (coming out of the whitening filter) 
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To keep the construction of the rest of the receiver easy to understand, let’s 
consider a simple example. Let’s say 

rk = I v  0 + Ik−1 v1 + nk ′ (9.58)k 

That is, we’re assuming that all the other v 
k–i terms are 0, so we have a simpler 

equation to work with. We’ll also assume (1) v0 = 1 and v1 = 0.5, and (2) that we have 
BPSK modulation, in which case I 

k
 is either A or –A. The r  in this simpler case corre­

k

sponds to Figure 9.16. 

Now, as marked in that figure, we can see r 
k
 created as follows: An “input” I 

k 

comes in, it moves the “state” (what’s at position 1) over to position 2 (creating I 
k–1). 

Multiplication by v  and v1, and the addition of noise, creates the final output r .0 k 

We can draw a trellis diagram describing the creation of the output r 
k
 if the noise 

were not present. This diagram is shown in Figure 9.17: 

1. The “state” (in Figure 9.16) is represented by nodes, the dots drawn at each 
time—at any one time, this state is either –A or +A. 

2.The “input” I 
k
 (in Figure 9.16) is represented as a branch—if the input is 

I = – A, the branch is solid; if the input is I 
k 

= A, the branch is dotted.
k 

3. When an input comes in (that is, a branch is drawn), it changes the state. You 
can see this indicated by the state a branch begins at, and the state it ends in. 

4. Finally, if we know the “state” and the “input,” then we have all the information 
we need to figure out the output r 

k
 (assuming no noise). That output is drawn 

above each branch. 

"state" 

Ik 

v0 = 1 
v1 = 0.5 

"input" 

rk 

x x 

+ 
+ 

Ik–1 
1 2 

nk ′ 

Figure 9.16  Illustrating the creation of rk in a simpler case 
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time 0 time 1 time 2 

–1.5A –1.5A –A 

0.5A 

–0.5A 

0.5A 

–0.5A 

… 

+A

1.5A 1.5A


Figure 9.17  A trellis describing the creation of rk (without the noise) 

Here, I’m going to use a “common sense” argument (rather than a lengthy statis­
tical one) to explain how the optimal decoder uses the trellis of Figure 9.17 to get the 
output I′ : 

1. Since the noise nk′  is easily shown to be a Gaussian random variable with zero 
mean, then that, by definition, means that the average noise is 0. 

2. It makes sense, then, that given the sequence of received r 
k
 (k = 0, 1, 2, ..., L–1), 

which on average contain noise n 
k
 that equals 0, you could try to match the r ’s to 

k 

the best path of noise-free outputs in the trellis. That is, you would want to find 
the path in the trellis whose outputs (drawn with no noise) are closest to the rk 
(k = 0, 1, 2, ..., L–1) that you received. Once you’ve found this path, then you can 
figure out, by following the branches, what inputs I 

k
 (k = 0, 1, 2, ..., L–1) to put out 

from the receiver. 

Here’s an example. Let’s say that we receive the two values r1 = 1.7A and r2 = 
1.7A. We want the receiver to output the best guess on the sent bits. To do this, we 
turn to our trellis, and we find the path through the trellis with outputs that are closest 
to r1 = 1.7A and r2 = 1.7A. Looking at each path through the trellis, we find out how 
close each path is—see Figure 9.18(a) through (d). We then decide that the “bottom 
lines” path of Figure 9.18(d) is the closest. The branches on this path indicate that the 
outputs are I1 = A  and I2 = A, which tells us that the input bits are m = (1,1). Our 
receiver outputs these bits. 

This optimal rest-of-the-receiver is commonly called an MLSE (Maximum Likeli­
hood Sequence Estimator). 

In general, searching through a trellis for the closest path can be a difficult task. 
But, in Chapters 7 and 8, we saw a handy way to do it—a way called the Viterbi algo­
rithm. When you want to use the Viterbi algorithm to find the best path, just use it in 
exactly the same way explained in Section 8.3. 
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r1 = 1.7A r2 = 1.7A 

time 0 time 1 time 2 

–1.5A –1.5A 

P  A  T  H 1 
(a) 

Distance2 = (1.7A – (–1.5A))2 + (1.7A – (–1.5A))2

 = 20.48A2 

time 0 time 1 time 2 
–1.5A 

0.5A 

P  A  T  H 2(b) 

Distance2 = (1.7A – (–1.5A))2 + (1.7A – 0.5A)2 = 11.72A2 

time 0 time 1 time 2 

1.5A 

–0.5A 

P  A  T  H 3 
(c) 

Distance2 = (1.7A – 1.5A)2 + (1.7A – (–0.5A))2 = 10.32A2 

time 0 time 1 time 2 

P  A  T  H 4 
(d) 

1.5A 1.5A 

Distance2 = (1.7A – 1.5A)2 + (1.7A – 1.5A)2 = 0.08A2 

Figure 9.18  Looking for the closest path through the trellis 
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Example 9.4 

If, after a whitening filter, the received signal is described by 

rk = Ik v0 + Ik −1 v1 + nk (E9.19) 

where 

v0 = v1 = 1 (E9.20) 

Ik = +1 or  Ik = −1 (E9.21) 

then figure out the output of an MLSE (using the Viterbi algorithm) when the 
input to the decoder corresponds to 

r1 = −2.1 and r2 = 0.1 (E9.22) 

Solution: Figure E9.1 shows the trellis diagram characterizing the received 
signal in Equation (E9.19). This diagram is created from Equation (E9.19) using 
the four steps outlined in the writing you just read. 

Also shown in Figure E9.1 is the application of the Viterbi algorithm to 
determine the best path through the trellis. For each node, the best parent is 
found by choosing the parent with the smallest total distance. When we get to the 
last nodes, we look for the node with the smallest total and we backtrack through 
the trellis as marked by the arrows. These arrows tell us that the output of the 
trellis should be (–1 1) (based on the branch lines of the best path). 

received –2.1 0.1 

–1 –2 dist2 = 0.01 total = 0.01 –2 dist2 = 4.41 total = 4.42 

0 
dist2= 4.41 best parent =–1 

dist2 = 0.01 
best parent 

= –1 

2 = 4.41
total = 4.41 

(total 0.01) total = 0.022 = 0.01 (total 4.42) 

0 
dist

total = 4.41 

0 dist

total = 4.42

+1 
2 dist2 = 16.81 total =16.81 2 

best parent best parent 
= –1 = –1 

(total 4.41) (total 0.02) 

Figure E9.1 
Trellis describing received signal + Viterbi Algorithm used to get best output 
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9.5.4 An Issue with Using the Whitening Filter and MLSE 

First, congratulations. When you build a receiver as shown in Figure 9.19 you’ve got an 
optimal one. You pass the incoming signal through an optimal receiver front end to get 
rk′ ; then you pass it through a whitening filter to get r . Finally, you pass it through an 

k

MLSE (which finds the closest path through a noiseless trellis), and that puts out the 
best guess on bits m′. 

However, there is a problem with the MLSE. In many communication systems, 
the number of states and the number of branches in the trellis can be ver y large. In 
fact, the trellis can be so large that it becomes very expensive to build receivers that 
implement the MLSE. People began to look for inexpensive alternatives. In essence, 
the rest of this chapter is all about cheaper options. We want to find alternatives to 
using the whitening filter followed by the MLSE—alternatives that will perform well, 
and will be far more cost effective. 

cos ωct 

x 

r(t) 

r ′(t) 
x 

h(–t) 

rkkT rk ′ 

ωk MLSE 
m ′ 

sin ωct 

Figure 9.19  The optimal receiver 

9.6 Linear Equalizers 

We start here with Figure 9.20(a): we’ve got the new modulator putting out s(t), the 
new channel putting out r(t) = s(t)*c(t)+n(t), and the optimal receiver front end putting 
out rk′ . We know how to build an optimal rest-of-the-receiver, but it’s so darn expensive 
that we’re looking for cheaper alternatives. The first alternative is called the linear 
equalizer. 

The use of the linear equalizer in the receiver is shown in Figure 9.20(b). It is 
simply a discrete filter with impulse response c that takes the input rk′  and turns it into k
a new variable called rk ; this r  is then passed through a decision device which outputs k
Ik ′ , the best guess on the data symbol I . The decision device always works in thek 
same way, exactly the way decision devices were described in Chapter 5. 
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What is this impulse response ck , and how do we choose it? There are many 
different possible choices for ck , and we’ll spend the next few sections discussing 
these choices (one section per choice). 

cos ωct 

coder Re { . } 
bits 

pulse 
shaper x 

n(t) 

c(t) + 

x 

x kT 
rk ′ 

ej(ω ct) 

sin ωct 

h(–t) 

m 
symbol 

Ik 

NEW OPTIMAL 
NEW MODULATOR NEW CHANNEL RECEIVER FRONT 

END
(a) 

device 
Decision 

rk ′ 
ck 

rk Ik ′ 
LINEAR 
EQUALIZER 

(b) 

Figure 9.20 (a) The modulator, channel, and receiver front end 
(b) The new rest-of-the-receiver (a linear equalizer followed by a decision device) 

9.6.1  Zero Forcing Linear Equalizer 

To understand this case, let’s start with a look at what is coming into the receiver, 
namely r ′ :k

r ′ = Ik ∗ xk + nk (9.59)k 

The intention in the zero forcing linear equalizer is to force the ISI to zero—to get the 
output rk to have the form 

rk = Ik + n′′ (9.60)k 

That’s easy. All we do in this case is make ck undo xk . That is, we choose ck to be 
the inverse filter for the filter xk . Mathematically, we choose (using the z-transform 
domain) 

C(z) = 1/X(z) (9.61) 
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There’s one problem with building the linear equalizer in this way: it focuses on 
getting rid of the filtering effect (the xk ), but it pays no attention to what happens to the 
noise. The noise passes through the filter ck , and it may get much bigger. This phe­
nomenon, known as noise amplification, can cause the Ik to get lost in the much larger 
noise nk′′ . For this reason, this type of linear equalizer is rarely used. 

Instead, engineers have a fondness for the... 

9.6.2 MMSE (Minimum Mean Squared Error) Equalizer 

With this type of equalizer, in comes 

r ′ = Ik ∗ xk + nk (9.62)k 

or, written differently, 

L−1 

rk ′ = ∑ Ii xk −i + nk (9.63) 
i=0 

 L−1 
r ′ = Ik x0 + ∑ Ii xk −i + nk k  (9.64)

i=0 i k   ≠ 

We’d like to choose the equalizer (the filter) ck so that what comes out, namely 
rk = ∗ck is as close to Ik as possible. With that in mind we say, mathematically, that rk ′
we want to choose ck to minimize the function: 

2( ) = E f ck  r ′ ∗ ck − Ik 
 (9.65)k  

where E[x] is the expected value of x. That is, in words: on average, we want the 
output of the filter to be as close as possible to Ik . After about a page of statistical 
wrangling, you can show that this requirement is met by choosing ck to satisfy (in the 
z-transform domain) 

C(z) = 1/[X(z) + No] (9.66) 

where N /2 is the variance of the noise introduced in the channel and X(z) is theo 
z-transform of xk . 

Example 9.5 

If a receiver sees the input 

r ′ = Ik + 0.5 Ik −1 + 0.25 Ik−2 + nk (E9.23)k 
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provide an equation for the zero forcing linear equalizer and an equation for the 
MMSE linear equalizer. Assume No=0.5. 

Solution: Writing the received signal in the form of a convolution, we have 

r ′ = Ik ∗ δ +  0.5 δ  +  0.25 δk−2 ) + n (E9.24)( kk k−1 k 

Comparing this with Equation (9.59), we recognize that 

xk = δ +  0.5 δ  +  0.25 δk−2 (E9.25)k k −1 

which, using z-transforms, corresponds to 

( ) = + 0.5 z + 0.25 z−2 (E9.26)x z  1 −1 

Now, for the zero forcing linear equalizer, we turn to Equation (9.61) which 
in this case leads us to 

C z  −2 (E9.27)( ) = 
1 + 0.5 z−1

1 
+ 0.25 z 

and, for the MMSE linear equalizer, we turn to Equation (9.66), which this time 
leads us to 

C z  −2 (E9.28)( ) = 
1.5 + 0.5 z− 

1
1 + 0.25 z 

9.7 Other Equalizers: the FSE and the DFE 

In addition to the linear equalizer, sometimes called LE for short, engineers designed 
other cheap alternatives to the optimal whitening filter followed by MLSE. I’ll provide 
just a brief overview here, and I’ll let you, in graduate courses or out of general inter­
est, read other books that describe the workings of the other alternatives to the 
whitening filter and the MLSE. 

First, there is the fractionally spaced equalizer, or FSE. If someone introduces you 
to this equalizer, don’t be at all intimidated. It is, in truth, just a linear equalizer in 
disguise, for which they have found a way to do all of the filtering in the digital domain, 
where it is cheaper and easier anyway. 

Secondly, there is the differential feedback equalizer, or DFE. In this case, what 
you do once you have r′  from the receiver front end is shown in Figure 9.21. Basically, k
you have what looks like a linear equalizer followed by a decision device. The main 
difference here is that a feedback filter has been added below the decision device. 
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Very briefly, you receive 

r ′ =  ∗  +  nk (9.67)k Ik xk 

L−1 

rk ′ = ∑ I xk i  + nk (9.68)i −

i=0


k −1 L−1   r ′ = I x  0 + 
∑ I x  +k  k  i  k i    ∑ I x  − 

 + nk (9.69)− i  k i  

 i=0    i k  +1 
=

You use the ck to get rid of the second term and the dk to get rid of the third term. 

+ 

dk 

ck 
rk ′ 

device 
In ′rk + 

– 
Decision 

FEEDBACK 
EQUALIZER 

FEEDFORWARD 
EQUALIZER 

Figure 9.21 The DFE 

9.8 Conclusion 

The channel was different. Instead of giving you what you sent with a noise—i.e., r(t) = 
s(t) + n(t)—it gave you something else. It gave you what you sent, filtered by a channel 
filter, plus a noise—that is, r(t) = c(t) ∗ s(t) + n(t). Because of that, we had to introduce 
a whole chapter. 

We first found a new way to express the modulator, and we were able to general­
ize it so that it did what we called “pulse shaping.” Then we looked at receivers. First, 
we tried one out, and we found out that it had problems with noise amplification, except 
in the case when we had a channel filter that was flat over the frequencies of transmis­
sion. 

Then we found the optimal receiver front end. From there, we built an optimal 
receiver, which was made up of a whitening filter and what is called an MLSE. Finding 
that costly to build, engineers came up with a new design. They built the linear equal­
izer in two forms (zero forcing and MMSE). 

That’s the meat of this chapter, in a nutshell. 
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Problems


1. (a) Provide an equation s(t) describing the output of a 16-PSK modulator with
 pulse shaping g(t). Make sure that your s(t) is in a form similar to
 Equation (9.6). 

(b) Repeat (a) for a 16-ASK modulator. 

2. Consider a system where we have a transmit filter g(t), a channel filtering 
cE(t) = δ(t), and the receiver of Figure 9.6 with filter f(t). The total filtering effect 
is x(t) (the convolution of all the filter effects). 

(a) Draw a block diagram of the communication system, including the modula­
tor and the receiver front end. Indicate the value of the signal before the 
decision device. 

(b) It is decided that x(t) will be a raised cosine function. Use a table of values 
to plot the raised cosine function x(t) of equation (9.21). On one column, 
use t values spaced by T/4, and on the other column provide the value of 
x(t). Do this over the range [–2T, 2T]. Provide two plots, for roll-off factors 
of 0.5 and 1.0. 

(c) Use your plot and your answer to (a) to explain how the raised cosine

function x(t) allows you to avoid ISI.


(d) Provide a possible selection for the filter g(t) and the filter f(t) so that the 
total filter x(t) is the raised cosine filter. 

3. Find three possible choices for f(t) ∗ g(t) (the combining of the transmit and 
receive filter) when you are told 

•	 the channel impulse response can be modeled as cE(t) = δ(t). 

•	 you will use the receiver of Figure 9.6. 

•	 you want to zero ISI. 

•	 you want to transmit at a symbol rate corresponding to a symbol duration 
T = 9600 symbols/sec. 

•	 you want the total bandwidth of the transmission to correspond to less than 
6000 Hz. 

4. You are told that the received signal after the receiver front end and whitening 
filter corresponds to 

1 1 rk	 = Ik	 + Ik −1 + nk ′	 (Q9.1)2 2 
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where 

Ik = +1 or  Ik = −  1 (Q9.2) 

(a) Assuming an MLSE is applied to this signal, plot the trellis diagram that the 
MLSE uses to make a decision on the final output symbols. 

(b) If you receive the values +1,+1,+1,0, use the Viterbi algorithm to determine 
what symbols the MLSE decides were sent. 

5. Your manager tells you that his receiver front end is outputting the signal: 

10.9 0.3k k k kr I I n− ′= + + (Q9.3) 

where 

2 or  I k = −  1− or  1  or  2  (Q9.4) 

(a) Assuming the noise nk is white, he asks you to design the optimal receiver 
for data detection. Be as complete and detailed as possible in your reply – 
include the trellis diagram, the values on all the branches, and a description 
of the Viterbi algorithm to be used for detection. 

(b) Design the optimal linear equalizer to (1) remove ISI; (2) minimize MSE. 
(Assume No = 0.7). 

6. Out of a receiver front end comes the signal 

rk = Ik + 0.5 Ik −1 + nk ′ (Q9.5) 

where 

Ik = −3A or  − A or  A or  3A (Q9.6) 

and the noises are independent Gaussian random variables (i.e., a whitening filter 
has already been applied). 

(a) Describe the MLSE. 

(b) Given inputs 1.5A, 2.5A, and –1.5A, what would your MLSE output? 
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n=1 

shaping 
Ing(t–nT)Ik 

N 
cE(t) + 

n(t) 

f(t) 
kT + τ 

Pulse 

Figure Q9.1  A communication system 

7. You are given the communication system of Figure Q9.1. 

(a) Determine the output after each block in the figure. 

(b) Specify the criteria on the communication system for zero ISI at the output 
of the sampler. 

(c) If I select 

1, t = 0 
x t  ( )∗ c  t  ( ) =  = − ( ≠E (Q9.7)( ) = g t  ( )∗ f  t  

0, t kT  iT k  i  ) 
for what values of τ do I have zero ISI out of the receiver front end? 



10 
Chapter 

Estimation and

Synchronization


So far in this book, we have considered two channel effects. Prior to Chapter 9, we 
considered channels adding a noise n(t) to the sent signal. In Chapter 9, we said 

the channel in fact added more than just a noise; it also acted as a filter with impulse 
response c(t). In this chapter, we again add to what channels do—we make them more 
realistic. 

10.1  Introduction 

In addition to noise and/or filtering, channels also add unwanted parameters to the 
sent signal. For example, take a look at Figure 10.1. There you see that the modulator 
sent the signal 

( ) = Acos (ω  +θ ), iT ≤  < (i +1)T (10.1)s t  t i tc 

which might, for example, be a QPSK signal. Many channels are well-modeled as 
follows: 

CHANNEL 

n(t) 

r(t) 

s(t) = Acos(ωct + θi), iT ≤ t < (i + 1)T 

r(t) = Acos((ωc + ∆ω)(t – τ) + θi + θ) + n(t), iT < t – τ < (i + 1)T 

+
phase 
offset 

θ 
offset 

∆ω 

timing 
offset 

τ 
Modulator 

frequency 

Figure 10.1  Channel effects 
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(1) the channel adds a timing offset τ, a phase offset θ, a frequency offset ∆ω; and 
(2) the channel adds a noise n(t). Combining these effects leads to the received signal 

( ) = Acos ((ω  + ∆ω)t +θ  θ ) + n( ), ≤  − τ < (i +1)T (10.2)+ t  iT  t  r t  c i 

Many receivers, given this received signal, tr y first to estimate and remove the 
timing offset τ, the phase offset θ, and the frequency offset ∆ω. Then, all that is left is 
the sent signal in the presence of noise n(t). They use the demodulators we saw in 
Chapter 5 to detect the signal in the presence of noise n(t). 

This chapter is all about how a receiver estimates τ, θ, ∆ω and any other unknown 
parameter, so that it can remove these parameters from the received signal (leaving 
just the signal in the presence of noise). This process of estimating unknown param­
eters at receivers is called estimation or synchronization. We will begin with a general 
explanation of how to estimate any parameter that a channel might introduce to a 
signal, and then we will explain different techniques that the receiver might use to 
estimate and remove a channel phase θ. 

10.2 Estimation: Part 1 
10.2.1  Our Goal 

In this section, we consider the following problem. We receive a signal r(t) with a 
random value a (with probability density function p(a)) contained in it. For example, 
we may receive the signal 

r t  ct i ), ≤  < (i +1)T (10.3)( ) = Acos (ω  +θ + a) + n(t  iT  t  

where a represents a random phase offset introduced by the channel.  We want to find a 
way to estimate the value of a in r(t). There is a way to express this problem mathemati­
cally to make it easier. Any r(t) can be represented on an orthonormal basis, and can be 
written instead as a vector r. We saw this idea in Chapter 5. For example, the signal r(t) 
in Equation (10.3) can be fully represented as the vector r = (r r2 ) using the1,

c ), ≤  < (i +1)Tcos (ω t  iT  t  orthonormal basis {φ1( )  tt , φ2(t)} where φ1( ) = 2 
T 

and φ2( ) = −  2t sin (ω t  iT  t  c ), ≤  < (i +1)T . Specifically, the signal r(t) inT 
Equation (10.3) can be expressed as the vector r described by 

r = (r r2 ) (10.4)1,

where 

r1 = A T
2 cos (θ + a) + n (10.5)i 1 
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r2 = A T 
2 sin (θ + a) + n (10.6)i 2 

The problem we want to solve can now be stated as: Given r, we want to find an 
estimate of a. We do not just want to estimate a in the special case of Equations (10.4) 
to (10.6), but we want to do this for any r containing a random value a. In general, we 
have an r equation, and we have a random value a contained in that r equation. We 
want to estimate that a. 

10.2.2 What We Need to Get an Estimate of a Given r 

There are two or three things required to create an estimate of a given r. They are all 
statistical quantities. 

1. p(rrrrr|a): The exact value of r depends on: the random value a; the value of the 
signal sent; and the random value of the channel noise. The value of r, then, is a 
random value that depends on three values. For a given a, r becomes a random 
variable that depends only on the signal sent and the noise. That is, for a given a, 
r can be described as a random variable with a distribution that we will label 
p(rrrrr|a). We require knowing or being able to evaluate this distribution before we 
can create an estimate of a, given r. 

2. p(a): a, being a random value, is characterized by a probability density function 
p(a). We also need to know this in order to compute an estimate of a. 

3. p(rrrrr): As I explained in point 1, r is a random value, and that means it can be 
described by a probability density function p(rrrrr). In some cases, generating the 
value of a will require we know the function p(rrrrr). 

Next, we’ll see how to use these values to create an estimate of a, given r. There are 
three main ways to come up with this estimate, and these are described in the next 
three sections. 

10.2.3 Estimating a Given r, the First Way 

The first way is called the minimum mean squared error (MMSE) method. It gener­
ates an estimate â  called the minimum mean squared error estimate. The ideammse 
here is to output the estimate of a, â , that is, on average, as close to a as possible.mmse 
Mathematically, the idea is to output the â  that satisfies the following state­mmse 

2
ment: The value â  minimizes the value E a  − âmmse ) 

 (where E[x] is themmse 
( 

expected value of x). 
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After some work, you can show that the minimum mean squared estimate âmmse 
can be calculated with a simple mathematical equation if you know the probabilities 
p(rrrrr|a), p(a), and p(rrrrr): 

∞ 

âmmse = ∫ a p (a r )da (10.7) 
−∞ 

r ) = 
p (r a 

where p a  
a) p ( )( . rp ( )  

10.2.4 Estimating a Given r, the Second Way 

Often, the mathematical computation of the estimate â  from Equation (10.7) ismmse 
rather messy. So, engineers, who have never been big on “messy math,” found a new 
way to get an estimate of a. They called their new way the maximum a posteriori, or 
MAP, estimate of a, and labeled it âMAP . This is the estimate that satisfies the following 

mathematical statement: Choose the value âMAP that minimizes E C  (a, âMAP ) 
where C a aMAP ) = 1 if âMAP is not ver y close to a, and C a aMAP ) = 0 if âMAP is( , ˆ ( , ˆ 
ver y close to a. 
This mathematical statement basically says, in words, find the âMAP  that is ver y close 
to a. 

The value of âMAP  can be found if you know the two probabilities p(rrrrr|a) and p(a). 
If you know these two things, then the value of âMAP  can be found according to the 
mathematical statement: âMAP is the value that maximizes the function p(rrrrr|a)· p(a); or, 
equivalently through the mathematical equation 

âMAP = argmax p (r aa) p ( )  (10.8)
a 

or 

∂ p (r aa ) p ( )  = ˆ = 0 (10.9)a aMAP∂a 

Generally speaking, the estimates â  and âMAP  work out to the same value. Inmmse 

fact, in almost every case of practical interest, these values are identical. 
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10.2.5 Estimating a Given r, the Third Way 

There is one more way to generate an estimate for a given r. This method is used 
if you have a slightly different case than that we have been studying so far. It is used if 
the channel introduces an unknown value a—this time a is not described as a random 
value but rather a is just some unknown value. For example, the channel may add a 
constant a to the sent signal, as shown in Figure 10.2, and the value a added on is not 
well-described as a random value, but just some unknown, fixed number. 

Engineers wanted to create an estimate that would be as close to a as statistically 
possible. They found a way to create this estimate mathematically, and called the 
estimation method they invented maximum likelihood (or ML) estimation. The esti­
mate for a that this method provides is called âML . 

The âML  estimate is created according to the following mathematical equation: 

âML = argmax p (r a ), (10.10)
a 

or, equivalently, 

∂ p (r a ) = ˆ = 0 (10.11)a aML∂a 

modulator receiver 
s(t) 

++ 
r(t) = s(t) + a + n(t) 

a n(t) 

some unknown 
value 

Figure 10.2 A channel introduces an unknown value 

Example 10.1 

Let’s say that you pick up some unknown value a corrupted by a zero-mean unit-
variance Gaussian noise. That is, let’s say you find: 

= + n (E10.1) 
where 

r a  

 −n ( ) = 1 exp 
2 

p n  
2π 

 2 
 

(E10.2) 
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Determine the best estimate of a. 

Solution: We’re dealing with an unknown value of a here, so in this case we 
turn to Equation (10.11). Specifically, this equation tells us that we require p(r|a) 
if we’re going to come up with an estimate for a, so let’s start by getting p(r|a). 

The key is realizing that p(r|a) is the likelihood of having r (for example, 
r = 1) show up, given a (for example, a = 0.2). Now, since r = a + n, I’ll get r 
when a is sent only if n = r – a (so for our example values, n = 1 – 0.2 = 0.8). 
Mathematically, 

p r a) = p  n  = r − a) (E10.3)(( 
Now, plugging in the known distribution for noise (Equation E10.2), this 

means 

2(r a) 
p r a) = 1 exp 




− −( (E10.4)2π  2  

Okay, now we have p(r|a). We’re ready to come up with our estimate using 
Equation (10.11). 

p r a)∂ ( a aML 
= 0 (E10.5)= ˆ∂a 

(r a)2 


∂ 

 1 exp 
 − −  

= ˆa aML 
= 0 (E10.6)∂a  2π  2    

2− 2 (r a) 
 

 −  −  1 −2 (r a)
⋅ −1 exp   = ˆa aML 

= 0 (E10.7)2π 2 
( ) ⋅ 

 2  

2 − −  

−
(r âML ) ⋅ exp 

(r âML )  = 0
 2  

(E10.8)
 

a = r (E10.9)ˆML

Therefore, if I see r = a + n = 0.7, with n defined according to equation (E10.2), I’ll 
guess (estimate) that 0.7 is in fact the value of a. 
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10.3 Evaluating Channel Phase: A Practical Example 

10.3.1 Our Example and Its Theoretically Computed Estimate

Let’s now look at a practical example of how to come up with an estimate of a given r. 
Take a look at Figure 10.3, where we have a transmitter that is sending a cosine wave 

( ) = Acos (ω t)  over a short time interval. The channel introduces a phase offset as t  c 
and adds a noise n(t). As a result, the received signal is 

( ) = Acos (ω  +  ( ), 0 <  <  r t  t  a  ) + n t  t  TE (10.12)c 

where the channel phase a is known to be a random value uniform in the range [0, 2π), 
and the noise n(t) represents an additive white Gaussian noise. 

The receiver greets the incoming signal with a receiver front end, which maps 
r(t) to the vector r = (r1, r2) by mapping it on to the orthonormal basis {φ1( )t , φ2(t)} 

sin (ωct ), 0 <  <  t  TE .t cos (ωct ), 0 <  < twhere φ1 ( ) = 
T 
2 

E 

t  TE and φ2 ( ) = −  2 
TE 

 Specifically, as seen in Chapter 5, the receiver front end computes 

r = (r r2 ) (10.13)1,

where 

∞ TE TE TE 

( )  ( )  ∫ ( )  ( )  ∫ t  a  )φ (t dt + n t  φ1 t dtr1 = ∫ r t  φ1 t dt = r t  φ1 t dt = Acos (ω  +  1 ) ∫ ( )  ( )  c 
−∞ 0 0 0 
TE 

Acos (ω  +  1 )= ∫ ct a )φ (t dt + n1


0


(10.14) 

CHANNEL 

r(t) = Acos(ωct + a) + n(t), 0 < t < TE 
n(t) 

s(t) = Acos(ω
+ 

phase 
offset 

a 

a is uniform random value

between [0, 2π).


ct), 0 < t < TE 

Figure 10.3 Channel introducing phase offset and noise 
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∞ TE TE TE 

( t dt = ∫ r t φ2 t dt =∫ Acos (ω + 2 ) ( t dtr2 = ∫ r t )φ2( )  ( )  ( )  t a)φ (t dt + ∫ n t )φ2( )c 
−∞ 0 0 0 
TE 

Acos (ω + 2 )= ∫ ct a)φ (t dt + n2


0


(10.15) 

Using a little bit of math, this simplifies to 

r = (r r2 ) (10.16)1,

where 

r1 = A TE cos ( ) + na 1 (10.17)
2 

r2 = A TE sin ( ) + na 2 (10.18)
2 

We’ll assume TE = 2 to simplify our presentation. It can be shown (but you’ll have 
to take my word for it) that n1 and n2 are both Gaussian random variables with mean 0 
and variance σ 2, and n1 and n2 are independent. We’ll now figure out the MAP estimate n 

a  given the r = (r1, r2) of equations (10.16) to (10.18). To get this estimate we willˆMAP
need two things, p(a) and p(rrrrr|a). Let’s start out by evaluating these. 

1. p(a): We were told that a is a random variable, uniform in the range of [0, 2π). 
Writing this statistically, we know that the distribution of a, p(a), corresponds to 

 1 
( ) = 2π 

, a ∈ [0, 2π) p a  (10.19)
 0 , otherwise 

2. p(rrrrr|a): We will need to figure this one out statistically, as follows: We start with 

p (r a) = p r r( 1 , a) (10.20)2 

That is, p(rrrrr|a) is the probability that r1 takes on a particular value given a, and the 
probability that r2 takes on a particular value given a. 



1

2 
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Now, we know that r1 = Acos(a) + n1. So, given a, the likelihood that r  = x is the 
likelihood that the noise n1 = x – Acos(a). Similarly, with r  = Asin(a) + n2, the likeli­2 
hood that r2 = y given a is the likelihood that n  = y – Asin(a). With these two things in2
mind, we can write 

( 1 ,p r  r  a) = p n = r1 − Acos ( ), n2 = r2 − Asin (a)) (10.21)( 1 a 

Now, with the noises n1 and n2 independent of one another, then we can express 
the equation above according to 

( 1 ,p r r a) = p n = r1 − Acos ( )) ⋅ p n = r2 − Asin ( )) (10.22)( 1 a ( 2 a2 

Next, we can continue to apply what we know to this equation. We know that the 
noise n1 and n2 are Gaussian random variables, with mean 0 and variance σ 2—that n 

is, mathematically, p n = n) = p n = n) = 1 exp 
 2σ2  . Substituting this into 

Equation (10.22), we have 2πσ2 
n 

( 1 ( 2 

 −n2  

n 

a) = 1 exp 

 −(r Acos ( ))2  1  −(r − Asin ( ))( 1,p r  r 1 − a  ⋅ exp  2 a 

2 


 

2 
2πσ 2 

 2σn 
2  2πσ 2 

 2σn 
2 n n 

(10.23) 
Using the simple mathematical property exp(a)exp(b) = exp(a + b) we end up with 

2 2 

a) = 1 exp 

 −(r Acos ( )) − (r2 − Asin ( ))− a a  

1 ( 1,p r  r2  (10.24)2πσ 2  2σ 2 
n  n  

This equation represents p(rrrr r|a), which is all wer|a). We now have p(a) and p(rrrr
need to compute the MAP estimate p(a). 

The estimate âMAP  corresponds to the value computed from the equation 

âMAP = argmax p (r a p a) ( )  (10.25)
a 

1 
From (10.19), p(a) is a constant 2π for any phase a in [0, 2π). Being constant, it 

does not affect the choice of maximum value âMAP (that is, the value maximizing 

p (r a) ⋅ 1 
is the same value maximizing p(rrrrr|a)). Hence, we can write our equation as2π


âMAP = argmax p (r
a) (10.26)
a 
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Substituting the values we have from Equation (10.24) for p(rrrrr|a) we end up with: 

2 2
− a a  

=̂MAP = argmax 1 exp 
 −(r Acos ( )) − (r2 − Asin ( ))1  

 (10.27)a 2πσ 2  2σ 2 
n  n  

2 2 2 2 2 

exp 
 −(r1 + r2 ) − A (cos ( ) + sin ( )) + (2r Acos ( ) + 2r Asin ( )) a a 1 a 

=̂MAP = argmax 1 a 2  
a 2πσn 

2  2σn 
2 

 

(10.28) 

1 a 2 a1  −(r + r2 )   −A  2r Acos ( ) + 2r Asin ( )  
=̂MAP = argmax exp  1

2 2 

 exp 

 2σ 

2

2 



 exp   a 2πσn 

2 

 2σ 2  n  2σ 2 
n n 

(10.29) 

We can remove all multiplier terms that are not a function of a because these 
terms won’t affect the optimization. This leads us to 

âMAP = argmax exp 
 r Acos( )+ r Asin ( a)

1 a 2 
2 (10.30)

a  sn  

Now, we use a little mathematical trick. We can find the value that maximizes x or 
we can find the value that maximizes ln(x). Either way, we will end up with the same 
value. This tells us that our equation can be rewritten according to 

aa 2= argmax ln 
 
exp


 

r Acos( )+ r Asin ( )

 

âMAP 
 1

2 
 (10.31)

a  s n 

a
âMAP 

1 a 2= argmax 
r Acos ( ) + r Asin ( )

= argmax [r Acos a + r Asin a]1 2 
a σ 2 

a n 

(10.32) 
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Borrowing from a bit of math not shown here—take my word for it—you can 
rewrite the equation according to 

TE

âMAP = argmax ∫ r ( ) A cos (ω  +  a )dt  (10.33)t tc

a
 0 

(This comes about because ∑aibi is the same as ∫ a t  b  t  dt   where ai ’s and bi ’s( ) ( )  
i 

represent a(t) and b(t) on an orthonormal basis.) Now, since a is the value that maxi­
mizes the righthand term, it is equivalent to the value a that satisfies the equation 
(borrowing from first-year calculus) 

∂ TE


( ) A cos (ω + a)dt 
r t  tc a = âMAP 
= 0 (10.34)∂a ∫ 0 

Taking this derivative leads us to 

TE

∫ ( )sin (ω + âMAP  )dt  = 0 (10.35)r t  tc 
0 

That means that our estimate âMAP is the one that, given r(t), forces the integral 
of Equation (10.35) to 0. A physical device that finds this âMAP  given r(t) is shown in 
Figure 10.4. Here, you see a term, sin (ω +t â ) , where â  is the current estimate of c 
the phase a, multiplies r(t). This product is passed through an integrator, which 
outputs the value 

TE

( )sin (ω + â )dt  . (10.36)r t  t∫ c 
0 

TE

0 
∫x decision 

device 
close to φ 

not close to φ 

sin(ωct + a)∧ 

output ∧r(t) sin(ωct + a) 
= Acos(ωct + a) + n(t), 0 < t < TE 

∧update a 
and send 

it back 

Figure 10.4 A device to evaluate ̂  aMAP 
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This value enters into a decision device (typically implemented using a voltage-
controlled oscillator, or VCO for short). If the integral is 0 (or very close to it), then the 
decision device decides that the current â  estimate is the desired estimate âMAP . If 
the value is not close to 0, then the decision device updates the value of â  and sends it 
back to see if it now makes the integral of Equation (10.35) equal to 0 (or very close to 

( ) = Acos (ω  +  a) + n t  it). In this way, given r t  t  ( ), t ∈[0, T ] , we can generate anc E 
estimate of a. 

10.3.2 The Practical Estimator: the PLL 

In practice, engineers estimate the phase a using a device very close to the one shown 
in Figure 10.4, namely the device shown in Figure 10.5, called a phase-locked loop, or 
PLL for short. 

Looking at Figure 10.5, we see that the PLL is ver y close to the estimator of 
Figure 10.4. Here are the differences: (1) the integrator has been replaced by a filter 
F(f); and (2) the decision device has been implemented using a VCO. 

= Acos(ωct + a) + n(t), 0 < t < TE 

x 
decision 

device built 

sin(ωct + a)∧ 

∧sin(ωct + a) 
outputF(f)r(t) 

using VCO 

Figure 10.5 Phase-locked loop 

Figure 10.6 helps to explain the workings of the PLL. At the input we have 

r t  t  ( )  (10.37)( ) = Acos (ω  +  a) + n t  c 

To keep the written explanation of the PLL workings simple, I’ll simply ignore the 
noise for the sake of the verbal description. We’ll be assuming that the input is 

( )r t  = (cosA ctω  +  a) (10.38) 

Now, as this r(t) comes in, it gets multiplied by the sinusoid

( )ˆsin ct aω +  (10.39) 
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∧Acos(ωct + a) . sin(ωct + a) ∧∧ ∧ 

r(t) 
= Acos(ωct + a), 0 < t < TE 

x 

sin(ωct + a)∧ 

sin(ωct + a)∧ 

∧ 

F(f) 

= A sin(2ωct + a + a) + A sin(a – a) 

∧ 

2 2 2 
2 

A sin(a – a) * f(t) 
≈ A sin(a – a) 

∧ 
2∂t 

∂a ∝ A sin(a – a) 

VCO 

Figure 10.6 The PLL explained 

where â  is the current estimate of our channel phase. The output signal from that 
product is 

′( ) = Acos (ω  +  t  a  ˆ ) (10.40)r t  t  a  ) sin (ω  +  c c 

r t  ( ct  a  a  ˆ ) + A sin (a  a  ˆ ) (10.41)′( ) = A sin 2 ω  + +  −  
2 2 

This signal then goes through the filter F( f ), which acts as a low-pass filter, 
cutting out the high-frequency term in r′(t) (the first term in r′(t)). As a result, the 
output corresponds to 

Ar t  − (′( ) = 
2 

sin (a  a  ˆ )∗ f t  ) (10.42) 

We will assume that F( f ) is close to 1 (f (t) is close to δ(t)) in the low-frequency 
range, and hence the r ′(t) is well-approximated by 

A′( ) = 
2 

sin (a  a  ) (10.43)r t  − ˆ 

This signal then enters into the VCO, which acts as a decision device, deciding based 
on its input whether to update the current estimate â , or keep it and be done. Specifi­
cally, the VCO is a device that determines the rate of change of the phase estimate â , 
according to 

∂â 
= K ⋅ (input to VCO ) (10.44)∂t 
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ˆ∂a  A= ⋅ K sin (a a  ˆ ) (10.45)− 
∂t 2 

Now, if the phase estimate ˆ =a a , then plugging this into the equation above, 

∂â 0= (10.46)∂t 

That is, the estimate â  is not changed. The VCO decides to hold onto its current 
estimate. 

− ˆ ) ≈ − ˆAlternatively, let’s say the value of â is close to a. In that case, sin (a a  a a  , 
and we have 

ˆ∂a  A≈ ⋅ K a a  ˆ ) (10.47)⋅ ( − 
∂t 2


∂â

If â  is smaller than a, then will be positive, which means that the VCO is∂t ∂â

going to increase the estimate â . If, on the other hand, â is larger than a, then is∂t 
negative, which means that the VCO will decrease the value of â . In this way, the 

a a .VCO acts as a decision device, making changes in â  until ˆ = 
This is, practically speaking, the way engineers generate an estimate of the 

unknown phase a. There are a number of tweakings to the PLL that are sometimes 
performed, and under different conditions they make different choices for the F(f). But 
these details are left for another time—and another book. 

10.3.3 Updates to the Practical Estimator in MPSK 

Let’s consider what we’ve done so far. We received the signal 

( ) = Acos (ω  + ) + t TE (10.48)r t  t a  n(t ), 0 ≤  <  c 

where a represents a random phase offset and n(t) represents an additive white 
Gaussian noise. We then built a device that creates the estimate â of a. We also saw 
an alternative version of this estimator, called the PLL, which is commonly deployed 
by most engineers. 

But in some communication systems, we receive 

r t  t  ) + t( ) = Acos (ω  +θ + a  n( )  (10.49)c 
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2π  
where θ is a value in the set  k k = 0,  1,  …, M −1  and represents information 

 M 
, 

 
bits stored in the transmitted phase. This is what we receive if the transmitter corre­
sponds to an MPSK modulator. You can see how this received signal is created by 
taking a look at Figure 10.7. In this section, we are interested in finding a way to create 
an estimate for a, given the received signal shown in Equation (10.49), rather than the 
r(t) shown in Equation (10.48). 

CHANNEL 

n(t) 
= Acos(ωct + θ), 

θ∈ 2πk, k = 0,1,…, M – 1} 
r(t) = Acos(ωc + θ + a) + n(t) 

s(t) 

MPSK 
+ 

phase 
offset 

a bits 

M 

modulator 

Figure 10.7 A practical received signal 

Typically, the way engineers generate the estimate of a, given r(t), is shown in 
Figure 10.8. The idea, as explained in that figure, is this: use a processor that gets rid 
of θ, and then use the PLL shown in Figure 10.5. Only one question remains: how do 
we get rid of the phase θ? One device commonly employed to do this is shown in 
Figure 10.9. In comes 

( ) = Acos (ω  +θ + a) + n t  r t  t  ( )  (10.50)c 

r(t) 
= Acos(ωct + θ + a) + n(t) 

get rid of θ∈ 2πk, k = 0,1,…, M – 1}
M 

PLL 
sin(ωct + a)∧ 

processor: 

^Figure 10.8 Creating an estimate of a, a, given r(t) 
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PLL 
sin(Mωct + a)∧ 

r′′(t) ≈ AMcos(Mωct + M . a) 

( . )M 

BPF
 centered 

at 
M . ωc 

θ∈{ 2π k, k = 0, 1, …, M–1} 

r(t) 
= Acos(ωct + θ + a) 

r′(t) = [r(t)]M 

M = AMcos(Mωct + 2
M 
π k . M + M . a) 

+ low freq. terms 

Figure 10.9 Processor to remove θθθθθ

2π ,where θ is a value in the set 

 M

k k = 0, 1,…, M −1
 

. To simplify the presentation
 

of the workings of Figure 10.9, we’ll ignore the noise. That means we can write the 
input as 

( ) = 

 

c 
2π t +r t  Acos ω + k a  (10.51)M  

where k = 0 or 1 or … or M – 1. After passing this input through the power-of-M 
device, we end up with 

M
  ′( ) =  Acos  ω + 2π k ar t  
  ct +  (10.52)M  

r t  M cos  M t M ⋅ 2 
M 
π k M ⋅ a 

 
ω + +  ′( ) = 


 

c 

(10.53) 
+ (lower frequency terms) 

This signal is passed through a bandpass filter, which cuts out all the terms 
except the term centered around frequency Mω c —that is, except the first term of 
Equation (10.53). As a result, the output of the bandpass filter is 

′′( ) = ω + π + ) = ω +r t M cos (M t 2 k Ma M cos (M t Ma) (10.54)c c 

The PLL tracks the phase of this term and, hence, it ends up with the phase esti­
mate ˆ =a Ma . We use a divide-by-M to generate the desired phase estimate of a. 
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10.4 Conclusion 

This chapter describes the world of estimation, also known as synchronization. It is an 
important part of telecommunications because, when sending a signal from transmitter 
to receiver, the channel often adds unwanted parameters along the way, which we label 
a. We need to be able to estimate these parameters so we can remove them from the 
received signal. This chapter provided a general framework for creating the estimate 
â  of any given parameter a. Specifically, there are three ways to generate this esti­
mate. The first method is known as MMSE, the second as MAP, and the third as ML. 
We then considered an important practical example, namely the estimation of channel 
phase. We saw how to estimate phase using the MAP method and we saw how engi­
neers implement a device similar to the estimator created from the MAP method. 
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Problems


1. A transmitter sends a. A receiver picks up the value r, which is characterized 
by 

2  
a) = 1 exp 


 (r − (a − 1)) p r( 

2πσ2 

 2σ  (Q10.1) 

 

Draw a block diagram of a receiver that performs ML detection. 

2. A transmitter sends a value a, which is a random variable characterized by 
Figure Q10.1. A receiver picks up the value r. 

(a) If r is characterized by 

p r a = +1) = 1
2 

exp  (− r( ) (Q10.2) 

1 2  p r a = −1) = 
2

exp   −1 r(   (Q10.3)
 2  

draw a block diagram of a receiver that performs MAP detection. 

(b) If r is characterized by 

 −r 2  
p r a = +1) = 1 exp  

 2σ ( (Q10.4)2πσ1
2  

1
2 

 

p(a) 

Figure Q10.1 
The pdf of a 

1/2 δ(t + 1) 1/2 δ(t – 1)
1/2 

a 
–1 +1 
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 −r 2  
p r a = −1) = 

2
1 
πσ2 

exp  
 2σ2 

 (Q10.5)( 
2 2 

draw a block diagram of a receiver that performs MAP detection. 

3. A receiver obser ves 

r a  n  (Q10.6)= +  
where a is a Gaussian random variable with mean 0 and variance s2, and n is a 

2Gaussian random variable with mean 0 and variance s1 . 

(a) Find the MMSE estimate. 

(b) Find the MAP estimate. 

4. A transmitter sends 

( ) = Acos (ω  +θ ), iT ≤  < (i +1)T (Q10.7)s t  t i t 

where θi = 0° or 180° 

and receives 

r t  t i )  ( ), iT ≤  < (i +1)T (Q10.8)( ) = Acos (ω  +θ + ε  +  n t  t  

Draw a block diagram of a system that will estimate the phase offset and briefly 
describe its operation. 





11 
Chapter 

Multiple Access Schemes

Teaching Telecommunications Systems to Share 

This chapter explores the different ways in which a communication channel can be 
shared by multiple users. We looked at this briefly in Chapter 2, where we intro­

duced time division multiplexing and frequency division multiplexing. In this chapter, 
we provide more details so that you can understand how to build a communication 
system that shares the channel among the many users who want to use it. 

11.1  What It Is 

Let’s say you have been given a license by the FCC to build a wireless communication 
system operating in a frequency band of 1.8 GHz to 1.805 GHz. You decide that you 
would like many users to be able to use your system. You also decide that each user 
will communicate only digital signals (that is, they will use a source coder to make all 
the information they send digital). You need to find a way to allocate portions of the 
communication channel to each user. This chapter is about how to do that. 

There are two general methods that allow many users to share a single communi­
cation channel: 

1. Multiplexing schemes.  Multiplexing schemes are channel-sharing schemes 
where portions of the channel are assigned to each user by a system controller at 
a central location. The system controller assigns, in advance, the channel por­
tions for each user, and controls each user’s access to the channel. 

2. Multiple access schemes. Multiple access schemes refer to channel-sharing 
schemes where a system controller assigns portions of the channel to each user 
based on current availability. The system controller can update the sharing of 
portions of the channel based on changes in system demand. Once the system 
controller tells the user what portion he can use, the user is in charge of making 
sure he uses the portion requested. 

Most modern communication systems use multiple access schemes, so we’ll 
spend our time on them. 
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11.2  The Underlying Ideas 

Look at Figure 11.1, since it explains what I describe next. 

user k 

signal 

si(k)(t) + si(j)(t) 
sent over channel 

coder 

coder 

+ + 

n(t) 

si(k)(t) 

si(j)(t) 
r(t) = si(k)(t) + si(j)(t) + n(t) 

channel 

user j 

source 

source 

modulator 

modulator 

(a) 

x 

x 

si,M(t) 

si,1(t) 

decoder 

wants to 
hear user 

k 
(not user j)

DECISION DEVICE 
FOR USER k 

R1 

r(t) = si(k)(t) + si(j)(t) 
+ n(t) 

decision 
device 

(i+1)T 

iT 

(k) 

(k) 

∫ 

(i+1)T 

iT ∫ 

source 

OPTIMAL RECEIVER 
FRONT END FOR USER k 

DEMODULATOR FOR USER k (from Chapter 5) 

(b) 

Figure 11.1  (a) User k and user j send their signals over the channel 
(b) A receiver tries to pick up user k’s signal 



Multiple Access Schemes: Teaching Telecommunications Systems to Share � 301 

k1. In Figure 11.1(a), we have a new naming convention. We use the notation si
( ) ( )t 

to indicate the signal sent out by the kth user during the time [iT,(i + 1)T]. Let’s say
kthat the kth user’s information, si

( ) ( ) is one of the following signals:t
k k k


i ,1 t i ,2 t i  M t
{s( ) ( ), s( ) ( ), …, s( ) ( )} . (Let’s assume, for example, it is a signal from a, 

QPSK signal set.) 

2. In Figure 11.1(a), we assume that there are two users, user k and user j, using 
the communication system. That means that the signal being sent over the 
channel is the combination of both sent signals, 

k3. In Figure 11.1(b), we want to pick up the signal from user k, si
( ) ( )t . We do not 

want the signal from user j, because we are not interested in what user j is saying. 
From Chapter 5, we know that the receiver front end to use when we want to pick 

kup the signal si
( ) ( )  (from user k) is the one shown in Figure 11.1(b). t

4. Let’s look at the top branch of this receiver front end. 
j( ) = s( ) ( ) + s( ) ( ) + n  t  ( ) is channel noise.4a. In comes r t i

k t t ( ) , where n ti 
j4b. We want to make sure that the signal si

( ) ( ) in r(t) does not make it out oft
this top branch. If this signal does not make it out of the top branch then

jwe have effectively eliminated the presence of si
( ) ( ) (user j) in this part 

of user k’s receiver. 
t

4c. The signal coming out of the top branch is 

(i+1)T (i+1)T

k k j
R1 = ∫ s( )( )  ( )  t  i

k t t ( t  r t  dt  = ∫ s( )( ) ⋅ s( )( ) + s( )( ) + n  t  ) dt  (11.1)i,1 i,1 i

iT iT


(i+1)T (i+1)T

k k k
R1 = ∫ s( )( )s( )( )  i,1 t i

j t dt  + ∫ s( )( )  ( )  t i
k t dt  + ∫ s( )( ) s( )( )  t  n  t  dt  (11.2)i,1 i,1


iT iT


(i +1)T 
k jIf we make sure that ∫ si ,1 t j t t( ) ( ) si 

( ) ( )dt  = 0 , then the signal si
( ) ( ) will not make 

iT (i+1)T 
k t j t  dt  = 0it out of the top branch. So, we require that ∫ s( ) ( ) si 

( ) ( )  .i ,1 
iT 

j5. Next, we also want to make sure that the signal si
( ) ( ) in r(t) does not make itt

out of branch 2, branch 3, and branch 4. That means we require that 

k js( ) ( ) s( ) ( )∫ i,2 t i t  dt  = 0 (11.3) 
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k js( ) ( ) s( ) ( )∫ i,3 t i t  dt  = 0 (11.4) 

k js( ) ( ) s( ) ( )∫ i,4 t i t  dt  = 0 

6. Generally, we can state that we want to make sure that 

k∫ si 
( ) ( ) s( ) ( )t i

j t  dt  = 0 (11.5) 

k t jfor all possible si
( ) ( ) and si

( ) ( ) signals sent. It is easily shown using Fouriert
transforms that, equivalently, we want to make sure that 

k∫ Si 
( ) ( ) S ( ) ( )df  = 0 (11.6)f i

j f 

In words, we want to make sure that the signal sent by user j is orthogonal to the 
signal sent by user k. This is the underlying principle of multiple access techniques— 
making sure that Equation (11.5) or (11.6) is satisfied. If you do that, then you make 
sure that user j’s signal does not appear in the output of a receiver that wants to pick 
up user k’s signal, and vice versa. 

Recently, engineers have become a more forgiving lot. Some say: “It would be OK 
if just a tiny bit of user j’s signal appeared in user k’s receiver, as long as it was such a 
small amount that it didn’t affect the performance of user k’s receiver.” Mathematically 
what they are saying is that they want to make sure that 

k∫ si 
( ) ( ) s( ) ( )t i

j t  dt  < ε  (11.7) 

where ε is a ver y small number. If you decide to build a multiple access system where 
this is the case, it is called interference-limited, and the signals sent are called pseudo-
orthogonal. 

Example 11.1 

Two users set out to share a communication channel. One user sends her binar y 
information as +x(t) (if the bit to send is 1) or –x(t) (if the bit is 0). The second 
user sends his bit as +y(t) or –y(t). The x(t) and y(t) are shown in Figure E10.1. 
Determine if these users are able to share the channel without interfering with 
one another. 

Solution: The users, we’ll call them user 1 and user 2, will be able to share the 
channel if the signals they send satisfy 

∫ 1 t 2s( ) ( ) s( ) ( ) dt  = 0 (E11.1)t 
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Now, we know that user 1 sends either + or – x(t) and user 2 sends either 
+ or – y(t). So, plugging this into our requirement leads to 

⋅ ± y  t  ( )    ( ) dt  = 0 (E11.2)±x t      ∫  

Now, let’s use a little math and see if indeed this equality holds: 

x t  ⋅ y  t  ±∫ ( )  ( )  dt  = 0 (E11.3) 

1 

x t  y  t  ∫ ( )  ( )  dt  = 0 (E11.4) 
0 

1
2 1 

1 1 dt + ∫1⋅  −  1⋅ ( ) dt = 0∫ (E11.5) 
0 1

2 

1
2 + − 1

2) = 0 (E11.6) 

0 0 (E11.7) 

( 

= 
Yes, the equality holds. The two users will be able to share the channel 

without interfering with one another. 

x(t) y(t) 

11 
1 

t 1/21 -1 

Figure E11.1  Signals sent by user 1 and user 2 

11.3  TDMA 

A ver y common type of multiple access system, and one that satisfies Equation (11.5), 
is called TDMA, short for time division multiple access. You can see this idea in Figure 
11.2. User k has a slot of time in which to send his information, and then user j has a 
different time in which to send his information. In this way, the signal sent by user j 
( si

( ) ( )j k t ) ist ) is 0 when user k’s signal is non-zero; and the signal sent by user k ( si
( ) ( )

0 when user j’s signal is non-zero. This makes sure that the product in the integral of 
Equation (11.5) is 0, and therefore the integral is 0. 
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si(k)(t) 

coder 

coder 

t 

t 

si(j)(t) 

user k 

user j 

time 
align 

time 
align 

source 

source 

modulator 

modulator 

Figure 11.2  The TDMA idea 

The basic principle of TDMA is also shown in Figure 11.3. One user uses the 
entire frequency range of the communication channel for a brief period of time, then 
another user uses the entire frequency range of the communication channel for a brief 
time. An analogy could be a cocktail party where, to avoid hearing two conversations at 
once, one pair of people talk at one time, then another pair talk at another time, then 
another pair talk the time after that, then the first pair talk again, then the second pair 
talk again, then the third pair talk again, and so on. It’s a polite cocktail party where 
people share the time domain. 

Generally, in TDMA, users send an entire set of data symbols in their time slot, 
and this entire set is called a burst. For example, in a well-accepted standard called 
GSM, users send a burst of 148 data symbols at one time slot. 

frequency 

time 

user j user k user j user k 

TB TB TB TB 

Figure 11.3  The TDMA idea in the frequency-time domain 
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Example 11.2 

Propose a TDMA system which 

• allows two users to transmit data at a rate of 1 Mb/s and 

• allows each user to send three bits at a time. 

Solution: What we want to do is give user 1 a time slot long enough for three bits, 
which is a time slot of length 

3 3  1
1 10 bits ⋅ / sec 

 3  10  −6 sec  (E11.8)TSLOT = ⋅Tb = ⋅  = ⋅  6
 

We then want to give user 2 a slot long enough for his three bits, again a slot of 
duration 

⋅ −6 ⋅ −63TSLOT = ⋅Tb = 3 ⋅ (1  10  ) = 3  10  sec  (E11.9) 

We’ll rotate between giving user 1 a slot for her three bits and giving user 2 the 
slot for his three bits. In the end, we end up with a TDMA scheme as shown in 
Figure E11.2, where the shaded bits represent user 2’s bits, and the unshaded 
ones represent user 1’s bits. 

t 

SLOT 1 SLOT 2 SLOT 3 SLOT 4 

3 . Tb 3 . Tb 

= 3 . 10–6 

Figure E11.2  The TDMA scheme 

11.4  FDMA 

FDMA is another way to enable multiple users to share an entire communication resource. 
In FDMA (short for frequency division multiple access) each user uses a different band of 
frequencies to communicate his or her information. An example of FDMA is shown in 
Figure 11.4. There, we see user k sending his information at one frequency and user j 
sending her information at a different frequency. If you know who you want to listen to, you 
tune your receiver to pick up transmissions at the desired user’s frequency. This system 
satisfies Equation (11.6), because user k is 0 at the frequencies where user j is transmit­
ting, and user j is 0 at frequencies where user k is transmitting. That makes 

k kf i
j f f i

j fS ( ) ( ) S ( ) ( ) = 0 , and therefore ∫ S ( ) ( ) S ( ) ( )df  = 0 .i i 
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coder 

coder 

f 

f 

Si(k)(f) 

Si(k)(f) 

user k 

user j 

source 

source 

modulator 

modulator 

frequency 
shift 

frequency 
shift 

Figure 11.4  The FDMA idea 

The use of FDMA is also shown in Figure 11.5. Here, we see that each user is 
given all the time they could ever want, but they can only communicate over a small 
frequency band. 

frequency 

user k 

user j 

time 

Figure 11.5  The FDMA idea in the frequency-time domain 

11.5  CDMA 

11.5.1  Introduction 

CDMA is short for code division multiple access. The idea underlying CDMA was put 
for ward by an attractive Hollywood actress, Hedy Lamarr, and composer George 
Antheil. CDMA itself was made possible by improvements in technology in the late 
1980s and was designed by a giant company which has a football stadium named after 
them in San Diego, Qualcomm. 
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The idea behind CDMA is this. Give user k a unique shape, called a signature 
waveform or a code, and give user j a different unique shape, also called a signature 
waveform or a code. Make sure that the code you give user k and the code you give user 
j are carefully chosen to ensure that Equation (11.5) or Equation (11.7) is satisfied. 

For example: 
j1. Let’s say that we give user j the shape x ( ) ( )  shown in Figure 11.6(a). User jt

j t jsends si
( )( ) = +x ( )( ) to say the bit sent is 1, or he sends si

( )( ) = −x ( )( ) to 
say the bit sent is 0, as shown in Figure 11.6(b). 

j t j t t 

x(j)(t) 

(i + 1)T 
t 

iT 

+0.5 

–0.5 

(a)


+x(j)(t) –x(j)(t)


si(j)(t)= 
OR 

(i + 1)T 

(i + 1)T 
t 

iT 

iT 
0.5 

–0.5 

+0.5 

–0.5 

(b) 

Figure 11.6  (a) Code (shape) given to user j 
(b) Possible signals sent by user j 
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k2. Let’s also say that we give user k the shape x ( ) ( )  shown in Figure 11.7(a). t
kUser k sends si

( ) ( ) = +x ( ) ( ) to say the bit sent is 1, or he sendst k t 
ksi

( ) ( ) = −x ( ) ( )  to say the bit sent is 0, as shown in Figure 11.7(b). t k t 
k kt i

j t t3. Now, you can easily show that ∫ s ( ) ( ) s ( ) ( )d  t  = 0 for any si
( ) ( ) andi

jsi
( ) ( ) , which tells us that this choice satisfies Equation (11.5). That means that 

user j and user k can send these two signals and user j’s signal will not appear in 
user k’s receiver (and vice versa). 

t 

x(k)(t) 

si(k)(t)= 

+x(k)(t) –x(k)(t) 

(a) 

(i + 1)T 

(i + 1)T 

(i + 1)T 

t 
iT 

iT 

iT 

+1 

+1 

–1 

OR 

(b) 

Figure 11.7  (a) Code (shape) given to user j 
(b) Possible signals sent by user k 
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4. In this particular example, it is easily shown with a graphic how giving user k 
k t jthe code x( ) ( ) and giving user j the code x( ) ( ) allows us to send both user kt

and user j’s signal and not experience any interference. Consider the example of 
Figure 11.8. There you see a signal sent by user j, and a signal sent by user k, and 
you see the combining of user k and user j’s signal. You can see from the com­
bined signal that you can still tell what user k and user j sent: (1) user k’s 
information is 1 if the combined signal is above the x-axis, and it is 0 if the com­
bined signal is below the x-axis; (2) user j’s information is 1 if the combined signal 
slopes upward, and his information is 0 if the combined signal slopes downward. 
So, by giving each user a carefully chosen code, you can send signals at the same 
time and at the same frequency, but still have a way to separate users. 

user k

2T 3T 4TT0 

2T 3T 4TT 
0 

2T 3T 4TT 

1 0 1 1 

0 0 1 0 

1.5 

0.5 

0.5 

–0.5 

–0.5 

–1.5 

user k 

+ user j 

user j 

Figure 11.8  How assigning codes (shapes) lets you determine each user’s signal 
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CDMA is a great idea, because with it you have users sending information at the 
same time, and over the same frequencies, but you can still perfectly separate users. 
An analogy to CDMA could be that of being at a cocktail party filled with two humans 
and two aliens. The humans and aliens talk at the same time and over the same fre­
quencies, but the human communication is completely undetectable to the aliens and 
what the aliens speak is completely unnoticeable to the humans. 

There are two classes of CDMA. The first class is called orthogonal CDMA. In 
orthogonal CDMA, user j’s and user k’s signals satisfy Equation (11.5)—that is 

k t i
j t∫ si 

( ) ( ) s ( ) ( )d  t  = 0 . The second class is pseudo-orthogonal CDMA, where user j’s 
and user k’s signals instead satisfy Equation (11.7). In this case, a little bit of user j’s 
signal appears in user k’s signal, but just a very little, not enough to significantly affect 
the performance of the user k’s receiver. When you use pseudo-orthogonal CDMA, 
you can support more users than with orthogonal CDMA, TDMA, or FDMA. 

11.5.2  DS-CDMA 

There are three different types of CDMA, distinguished by the codes given to each 
user. The first and most-used form of CDMA is called direct sequence CDMA, or DS­
CDMA for short. 

In DS-CDMA, each user is given a code like the one shown in Figure 11.9. As you 
can see in that figure, each code consists of short pulses of duration Tc, and each short 
pulse has a height of either +1 or –1. In Figure 11.9, four short pulses comprise the 
user’s code. In general, there are N short pulses that make up a user’s code. User k 

ktakes her code, say the one in Figure 11.9, called x ( ) ( ) , and, in the simplest case,t 
ksends si

( ) ( ) = x ( ) ( )    to indicate the information bit is 1, and sends t k t 
ksi

( ) ( ) = −x ( ) ( )  to indicate that the information bit is 0. t k t 

x(k)(t) 

+1 

0 
T 

-1 

TC 2TC 3TC 4TC 

Figure 11.9  Code (shape) assigned to user k in a DS-CDMA system 
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Each user is given a unique code. For example, Figure 11.10 shows four codes, each 
one of which is given to a different user. User 1 uses the top code x t( )1 ( ) , user 2 uses the 
second code x t( )2 ( ), and so on. For the codes in Figure 11.10, it is easy to show that 

k j∫ ( )( )  ( )( )dt = 0 for  all  k , j (k ≠ j) (11.8)x  t x  t
k k j jWith s t  ( )( ), ( ) = ±x  t  ( )( ) = ±x t si t ( )( ) , and so on, this guarantees thati


k j
∫ ( )( )  ( )( )dt = 0 for  all  k , j (k ≠ j ) (11.9)s  t s  t

x(1)(t)


t


Figure 11.10 
Code for user 1, 2, 3, and 4 

TC 2TC 3TC 4TC 

TC 2TC 3TC 4TC 

TC 2TC 3TC 4TC 

T 

T 

+1 

+1 

-1 

+1 

-1 

+1 

-1 

x(2)(t) 

x(3)(t) 

x(4)(t) 

t 

t 

t 
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Hence, the example of Figure 11.10 represents an example of orthogonal CDMA. 

In general, in DS-CDMA, the code for user k can represented as 

N −1 kk ci (x t  Tc 

( ) ( ) = ∑(−1)
( )  

p t − iTc ) (11.10) 
i=0 

k 

Here, the ci
(k) is either 0 or 1, and hence the ( )

( )  
is either +1 or –1. This term −1 ci

tells us if the pulses that make up the code have an amplitude of –1 or +1. The P t( )Tc

represents the basic pulse shape that the code is made up of—in all the examples I’ve 
been drawing, this pulse shape is a simple rectangular shape. In general, the basic 
pulse can take on slightly different shapes, but all of these are, approximately speak­
ing, rectangular. 

11.5.3  FH-CDMA 

Another type of CDMA, not nearly as common today as DS-CDMA but still used, is 
called frequency-hopping CDMA, or FH-CDMA for short. In FH-CDMA, the codes are 
not made up of little pulses, as in DS-CDMA, but instead they are made up of little 
cosine waveforms, as shown in Figure 11.11. 

kWhat happens in FH-CDMA is this. The user k, using the code x t( ) ( )  in Figure 
k k k k( ) ( ) = +x t  ( ) ( ) = −x t  11.11, sends either s t  ( ) ( )  to represent the bit 1 or s t  ( ) ( ) toi i

represent the bit 0. To the communication channel, it looks like a signal is sent at one 
frequency, then suddenly it jumps (hops) to another frequency, and then it suddenly 
hops to a different frequency. Hence the name frequency hopping. 

To keep users’ signals from interfering with one another, you make sure that the 
frequency jumps that one user takes never collide with the frequency jumps that the 
other users take. Basically, the system must make sure that two users are never using 
the same frequency at the same time. 

t 
T 

+1 

-1 

0 

x(k)(t) 

cos(ω2t)cos(ω1t) cos(ω3t) cos(ω4t) 

Tc 2Tc 3Tc 4Tc 

Figure 11.11  Code (shape) assigned to user k 
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In FH-CDMA, the code used by a user can be described mathematically by the 
equation 

N −1 
kx  t  i

k ) Tc
( −( ) ( ) = ∑cos (ω ( )t p t iTc ) (11.11) 

i=0 

Here, cos (ωi 
( )t p t  k ) ( )  represents a cosine waveform which exists over the ver y

ω
Tc 

i
k short period of time [0,Tc]. The value ( )  indicates the frequency of this cosine wave­

form and is typically chosen from a finite set of possible frequencies. 

11.5.4  MC-CDMA 

The final member of the exclusive three-member CDMA club is a newcomer that 
announced its presence in 1993, and has been slowly growing in popularity since its 
late arrival. Its name is multicarrier CDMA, or MC-CDMA for short. In MC-CDMA, 
each user is given a code that is best understood in the frequency domain. I’ll explain 
this code in two par ts. 

1. The code for user k is generated by the block diagram of Figure 11.12. There you 
see a pulse of duration T is put at many different frequencies. Figure 11.13 shows 
the code for user k in the frequency domain. Each bump in frequency represents a 
pulse of duration T in time. 

cos(ωct) 

t 
T 

1 

x(k)(t) 

cos((ωc + ∆ω)t) 

cos(ωc + (N–1)∆ω)t) 

x 

x 

x 

x
p(t) 

Figure 11.12  The creation of user k’s code x(k)(t) for MC-CDMA (main idea) 

x(k)(f) 

f 
fc fc + ∆f fc –1)∆f+ (N

Figure 11.13  The frequency make-up of user k’s code x(k)(t) 
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2. Actually, the code is a little different than that explained in part 1. Figure 11.14 
shows the actual code given to user k. The code for user k is not only a pulse sent 
over the same frequencies over and over again, but a +1 or –1 is applied to each 
frequency. User k sends his information bit of 1 by sending the code for user k 
multiplied by +1, and sends the information bit 0 by sending the code for user k 
multiplied by –1. 

THESE +1 and –1 values 
are different for different users 

t 
T 

+1 

x(k)(t) 

cos((ωc + ∆ω)t) 

cos((ωc –1)∆ω)t) 

x 

x 

x 

x 

x 

x 

p(t) 

cos(ωct) 

user k 

+ 

–1 

–1 

+1 

 + (N

Figure 11.14  The creation of user k’s code x(k)(t) 

User j sends his information in exactly the same way—the only difference is that 
his code uses different +1 and –1 values to multiply each frequency. For example, user 
j may send his signal as +1 or –1 multiplied by the code generated as shown in Figure 
11.15. If you compare Figure 11.15, which generates the code for user j’s signal, to 
Figure 11.14, which generates the code for user k’s signal, you can immediately see 
that the only difference is in the +1 and –1’s at each frequency of the code. 

By carefully choosing the +1 and –1 values for each user’s code, we can make 
sure that their codes, and therefore their transmitted signals, are orthogonal or 
pseudo-orthogonal (that is, they satisfy Equation (11.5) or Equation (11.7)). 

t 
T 

+1 

x(j)(t) 

cos((ωc + ∆ω)t) 

cos((ωc –1)∆ω)t) 

x 

x 

x 

x 

x 

x 

p(t) 

cos(ωct) 

user j 

+ 

+1 

+1 

+1 

 + (N

Figure 11.15  The creation of user j’s code x(j)(t) 
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The MC-CDMA code can be expressed mathematically according to the equation 

k t 
N −1 

ci 
k 

∆ )⋅ ( )x( ) ( ) = ∑(−1)
( )  

cos  ((ω  +  i ω)t  p t  c (11.12) 
i=0 

k 

where ci
(k) is either 0 or 1, meaning that ( )

( )  
is either +1 or –1; this tells us that−1 ci

each frequency component is multiplied by either +1 or –1. The p(t) represents the 
pulse of duration T sent at each of the carrier frequencies. 

11.6  CIMA 

CIMA, short for carrier interferometry multiple access, is a novel set of multiple 
access techniques under development by friends Steve and Arnold at Idris Communi­
cations (which also holds the patent). I’ve spent the last year researching it, and my 
graduate students and I think it is a revolutionary multiple access scheme, so I de­
cided to include it here. 

The easiest way to understand CIMA is to consider one simple example, an 
example close to MC-CDMA. In CIMA, each user is given a unique code. The code for 
user k is generated according to Figure 11.16. Here, you can see that the CIMA code 
consists of a pulse shape of duration T, which is sent out over a large number of fre­
quencies, just like MC-CDMA. The difference is that each carrier frequency is not 
multiplied by a +1 or –1, as in MC-CDMA, but instead the nth carrier frequency is 

k( ( )
multiplied by the phase offset e j n−1)∆ θ . 

t 
T 

+1 

ej(ωc)∆ω)t 

ej(ωc + (N–1)∆ω)t ej(N–1)∆θ(k) 

x 

x 

x 

x 

x 

x 

p(t) 

ejωct 

ej∆θ(k)user k 

+ 

1 

takes the 

(makes ej(.)

Re{.} 

real part 

x(k)(t) 

cos(.)). 

Figure 11.16  The creation of user k’s code x(k)(t) in CIMA 

Let’s look at the code for user k in the time domain. The code in CIMA can be 
expressed mathematically according to 

N −1 
kx( ) ( ) = ∑cos ((ω  + ω)t  i  ∆ k ( )t i∆ + θ( ) ) p t  c (11.13) 

i=0 
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N −1 ∆ k

k
 t  c i∆ )t i } ( )x( ) ( ) = ∑Re{e j(ω +  ω  +  ( )  ⋅ p t (11.14)

 i=0  

N −1 t i∆ k

k
x( ) ( ) = 


Re ∑e j t  ( 

 ( )t  ωc e
j i∆ω +  ( ) ) 

⋅ p t (11.15)
  i=0  

N −1 j i( ∆ ω +  ( ) )  t ∆ k

k
x( ) ( ) = Re 


e j t ∑e ( )t ωc    ⋅ p t (11.16)
 i=0  

Now, using the properties of summation from our friendly math textbooks (spe­
cifically looking up geometric series), we can rewrite the sum in Equation (11.16) 
according to 

 t ∆ k 

 j t 
1 − e 

jN ( ∆ ω +  ( ) ) 

k t ωc 


   ⋅ p tx( ) ( ) = Re e 
 1 − e

j( ∆ ω +  ( ) )  
( )

t ∆ k (11.17) 
  

After about five lines of added math, we find out that this term can be rewritten 
according to 




)

N


⋅ 

D q( 
= 

D k( )sin +
wt


cos w t +
D kq( ) )

⋅
 p t( )  

(11.18) 
−
N 12k( )  t( ) (

D t+
 wx 
sin 



1

(

D 

2 
wt +
D kq( ) )


c 2 

Drawing this code in the time domain, we end up with the code shown in Figure 
11.17. It looks like a big pulse in the time domain with little lobes (side lobes) sur-
rounding it. So user k has a code which 

1. is generated according to Figure 11.16; and 

2. in the time domain looks like Figure 11.17.


User k sends the bit 1 by multiplying his code x( )k ( ) 
t  by +1 and sending it across
 the channel; he sends the bit 0 by multiplying the code x( )k ( )t  by –1 and sending it 
across the channel. 

User j has a different code x( ) ( )j t , generated as shown in Figure 11.18. As you
jcan see in this figure, the only difference between the code x( ) ( )t  for user j and the 

code x( )k ( )t  for user k is the phases that multiply each frequency. User j’s code is 
drawn in the time domain in Figure 11.19. 
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T 

x(k)(t) 

t = 
∆θ

(k) 

∆ω 

t 

Figure 11.17 The user k’s code x(k)(t) (drawn without the cos(ωωωωωct) terms) 

T 

1 

x(j)(t) 

ej((ωc + ∆ω)t) 

ej((ωc + (N–1)∆ω)t) ej(N–1)∆θ(j) 

x 

x 

x 

x 

x 

x 

p(t) 

ejωct 

ej∆θ(j)user k 

+ 

1 

Figure 11.18 The creation of user j’s code x(j)(t) in CIMA 

T 

x(j)(t) 

t = 
∆θ

(j) 

t 

∆ω 

Figure 11.19 x(j)(t) in the time domain (with cos(ωωωωωct) not drawn) 
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When looked at in the time domain, the only difference between the code of user 
k and the code of user j is that their pulses occur at different times. In that way, CIMA 
looks like TDMA—each user sends a pulse with a +1 or –1 on it, and these pulses are 
separated in time. However, one main difference is this. In TDMA, you always make 
sure that Equation (11.5) is satisfied; in CIMA, you start out by making sure Equation 
(11.5) is satisfied. When more users want to use your system, so many that Equation 
(11.5) can no longer be satisfied, TDMA tells some users they cannot use the system;
CIMA shifts to making sure that Equation (11.7) is satisfied instead (that is, your users 
shift automatically from being orthogonal to pseudo-orthogonal) and you can now 
handle all the new users. Not only that, but our current research is showing us that 
CIMA is able to offer better performance than TDMA. 

In a ver y real way, CIMA is a bridge between TDMA and CDMA, and that is a 
nice thing. 

11.7  Conclusion 

This chapter is all about the “how-to” of sharing a communication channel among 
many users. We saw the guiding principle behind this idea, then we saw how to share 
time (TDMA), how to share frequencies (FDMA), and finally, in CDMA, how to share 
codes. We also proposed a new set of multiple access possibilities when we introduced 
CIMA, a brand-new multiple access system. 
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Problems


1. Consider the signals shown in Figure Q11.1(a), (b), (c), (d). Two users want to 
use the system. User 1 will send +s1(t) for bit 1 and –s1(t) for bit 0. User 2 will 
send +s2(t) for bit 1 and –s2(t) for bit 0. 

(a) If the two users want to experience no interference with one another, which 
of the four signal sets should they use? Explain. 

(b) If the two users want to share the same channel but can tolerate a little bit of 
interference, which of the four signal sets would you recommend? Explain. 

(c) Which signal sets would you recommend they avoid? Explain. 

s1 (t) s2(t) 

Figure Q11.1 
Four signal sets 

t 

f 

t 
1 

t 
1 

1 

s2(t) 

s2(t) 

t
1 

s1(t) 

s1(t) 

(c) 

(b) 

(a) 

1 

f 

1 

1 

S1(f) 

–fm –fmfm fm 

S2(f) 

A1 

A2 
(d) 

0.99 1.99 

1/2 

1/21/2 

1/2 

t 

1 

1-1 
t1 

1 

– 

A1 = A2 
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2. Propose a TDMA system which allows four users to send 148 bits at a time at a 
data rate of 9.6 kb/s. Explain what each user sends, when they send it, and 
explain why. 

3. Propose an FDMA system which allows seven users to send data at a rate of 
9.6 kb/s. Explain what each user sends, in what frequency bands, and explain 
why. 

4. You are asked to build a DS-CDMA system to support (a) two orthogonal users 
and (b) four orthogonal users. Using trial and error (or any other method), 
determine the codes (see equation (11.10)) assigned to each user. 

5. Consider the three-user CDMA system with codes as shown in Figure Q11.2. 
Determine if these codes are orthogonal or pseudo-orthogonal. Explain. 

6. The CIMA user code is generated using Figure 11.16. Show, without skipping 
any lines of math, that the output signal corresponds to equation (11.18). 

x(1)(t) 

1 

Tc 2Tc 3Tc 
t Figure Q11.2 

CDMA codes 
–1 

x(2)(t) 

t 

1 

–1 

Tc 3Tc 

x(3)(t) 

+1 

2Tc 
t 

3Tc 
–1 



12 
Chapter 

Analog Communications


Wow, the last chapter, which is about something that came first. Before there were 
digital communications, before there were source coding and channel coding 

and digital modulation and equalization, there were analog communications. 

I will not go into the details of analog communications in this book, because in 
most cases it is being quickly replaced by powerful digital communication techniques. 
But, because some of what currently exists in the world today was built when there 
was only analog, it is important to have a basic understanding of it. 

12.1  Modulation—An Overview 

An analog communication system, roughly speaking, looks like what is drawn in 
Figure 12.1. You can see that the information signal x(t) comes in and is mapped by a 
modulator into a new signal s(t) 
ready to be sent over the 
channel. And that is all that 
happens at the transmitter modulator

x(t)
side—no source coder, no 

s(t) 

signalchannel coding. At the receiver information signal 
ready to be 

side, the signal that arrives sent over the channel C 
h

from the channel is picked up, a 
and it goes through a demodu- n 

n 
elator, which returns it to a best l

guess of the original informa­
tion signal. That’s it—no 
channel decoder, no source demodulator

x(t)
decoder. So, all we’ll do in this 
chapter is study the modulator 
and demodulator. 

^ r(t) 

best guess on x(t) 

Figure 12.1  An analog communication system 
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At the modulator, the input signal x(t) is typically a baseband signal—that is, a 
signal centered around 0 Hz. You can see this in Figure 12.2(a). The signal you want to 
send over the channel must be sent around the frequency ω c, as seen in Figure 
12.2(b). The goal of the modulator is to map the incoming signal at baseband to a 
signal that is centered around ω c. To do this, the modulator takes a sinusoid at the 
frequency ω c and it shoves x(t) in it as its amplitude, or as variations in its phase or 
frequency. I can explain that last line better in math, so: given x(t), the modulator 
outputs s(t) according to 

s t  ( )cos (ω  +θ ( )) (12.1)( ) = A t  t tc 

where the information x(t) is put into either A(t) or θ(t). 

X(f) 

f 

(a) 

ωc 
f 

your analog signal 
must travel the channel 
in this frequency band 

(b) 

Figure 12.2 (a) Your analog signal x(t) in the frequency domain 
(b) The frequency band over which your signal must be sent 

12.2 Amplitude Modulation (AM) 

One of the options on your radio is AM, shorthand for amplitude modulation, a simple 
type of modulator. 
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12.2.1  AM Modulators—in Time 

The basic idea in AM modulators is to take the information signal x(t) and map it into 
the amplitude of the sent signal s(t). Specifically, what happens is this: 

1. Make sure that the amplitudes of x(t) are in the range [–1, 1]. If they exceed 
this range, update x(t) by multiplying by a scalar so that it fits into the range [–1, 
1]. In what follows, I will assume x(t) has amplitudes in the range [–1, 1]. 

2. Send

s t  c (( ) = A (1 + m x t  )) cos  (ω t) (12.2)c 

where m is a value in the range [0,1] and is called the modulation index. 

Let’s say the input coming in is the x(t) shown in Figure 12.3(a); that is, the 
incoming x(t) is a square wave. To create the output s(t), let’s assume that m = 1. In 
this case, we can figure out the output as follows: 

x(t) 

t 

+1 

1 2 3 

–1 

(a) 

s(t) 

t 

2Ac 

(b) 

Figure 12.3 (a) Input to AM modulator (b) Output of AM modulator (m = 1) 



324 � Chapter Twelve 

1. At times when x(t) = –1, we have an output 

s t  c (( ) = A (1 + m x t  )) cos  (ω t) (12.3)c 

s t  c (( ) = A (1 +  −  1)) cos  (ω t ) (12.4)c 

s t  =( )  0 (12.5) 

2. At times when x(t) = +1, we have an output 

s t  c (( ) = A (1 + m x t  )) cos  (ω t) (12.6)c 

( ) = A (1 1) cos  (ω t) (12.7)s t  +c c 

( ) = 2 A cos  (ω t ) (12.8)s t  c c 

These two results tell us that for the x(t) of Figure 12.3(a), we have the output 
shown in Figure 12.3(b). You can see from Figure 12.3(b) that the shape (dotted lines) 
of Figure 12.3(b) is the same as the x(t) in Figure 12.3(a). The x(t) is said to create the 
“envelope” of the sent signal s(t). 

Let’s look at another example. In Figure 12.4(a), we see the input waveform 
x(t) = cos(Wt), where W is a ver y small value (close to 0). That means that s(t) has the 
form (using m = 1 again) 

( ) = A (1 cos  Wt) cos  (ω t ) (12.9)s t  +c c 

The plot of this is shown in Figure 12.4(b). Again, you can see that the 
x(t) = cos(Wt) shape forms the envelope of s(t). 

In general, to plot s(t) given x(t), you first plot x(t). Then, plot mx(t). Next, plot 1 + 
mx(t). Continuing on, plot Ac(1 + mx(t))—most times, it’s easy to go right from x(t) to 
A (1 + mx(t)). Finally, draw in dotted lines at Ac(1 + mx(t)) and its negative –A (1 +c c
mx(t)). Between these dotted lines, draw a sinusoid cos(ω ct). That’s it. You’ve got your 
AM signal. 
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x(t) 

s(t) 

t 

t 

(a) 

(b) 

+1 

–1 

cos(ωct) 

Ac(1 + mx(t)) 

Figure 12.4 (a) Input to AM modulator (b) Output of AM modulator (m = 1) 

Example 12.1 

Plot the output of an AM modulator using m = 1 and Ac = 2, when the input is that 
in Figure E12.1. 

Solution: The sent signal, which in general corresponds to Equation (12.2), this 
time looks like 

( ) = 2 1  + x t  s t  ( ( )) cos  ω t (E12.1)c 

The 2(1 + x(t)) looks like the dotted line drawn at the top of Figure E12.2. This 
creates the envelope of the sent signal s(t), which is shown in the solid “jiggly” 
line of Figure E12.2. 
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x(t) 

2 4 

+1 

–1 

Figure E12.1  Input to AM modulator 

t 

2 4 

4 

0 

2(1 +x(t)) 
Figure E12.2 Output from AM modulator 

12.2.2 AM Modulation—in Frequency 

Let’s see what the sent signal s(t) looks like in the frequency domain—that is, let’s 
look at the Fourier transform of s(t), S( f ). First, we know 

s t  ( ))cos  (ω t) (12.10)( ) = A (1 + m x t  c c 

s t  ( )cos (ω t) (12.11)( ) = A cos (ω t) + A mx t  c c c c 

Now, turning to the frequency domain, and using basic properties of Fourier trans­
forms, we have 

S f( ) = A 
2 

c (δ( f + fc ) + δ( f − fc )) + 

 A m X  f    
1 

2 δ( f + f ) + 1 
2 δ( f − f ) (12.12) 

 c ( ) ∗  
c c  

c c( ) = 
A (δ( f + f ) + δ( f − fc )) + 

A m  ( X  f  + f ) + X  f  − fc )) (12.13)S  f  c ( c (
2 2 

A picture is worth a thousand words, so let’s see what S( f ) looks like. Let’s say 
we have an X( f ) as shown in Figure 12.5(a). According to Equation (12.13), we then 
have an S( f ) as shown in Figure 12.5(b). The different parts of S( f ) in Equation 
(12.13) are pointed out in the plot of Figure 12.5(b). 
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X(f) 

S(f) 

f 

(a) 

δ(f + fc) 

f0 

1 

Acm 
2 

X(f + fc) 
Acm 

2Ac . m 
2 

Ac 
2 

Ac 
2 

δ(f – fc) 

X(f – fc) 

fc fc 
(b) 

Figure 12.5 
(a) Information signal input to AM modulator in frequency domain, X(f) 

(b) Signal output by AM modulator in frequency domain, S(f) (shown with m = 0.5) 

One thing engineers noticed when they looked at what was going on in the 
frequency domain was that transmission power was being spent in sending the im­
pulses in S(f)—the δ(f + fc ) and δ(f – f )—across the channel. They decided to come up c 
with a measure to figure out what percent of power was being spent sending these 
impulses, called modulation ef ficiency, and defined as follows: 

modulation efficiency, η = percent of total power that is being used to convey 
information; 

or, more mathematically, 

η = information power/total power (12.14) 

2m Pxη =  
1 + m P  (12.15)2 

x 
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where P is the power in x(t), and is calculated using the integralx

T

1 2 

P = lim x  t dt . 2 ( )x T →∞ T ∫ 
T− 2 

For example, if Px =1 and m = 1, then we have a modulation efficiency η = 0.5 = 50%. 

12.2.3 Demodulation of AM Signals—Noise-Free Case 

In this section, we will study the demodulator used when a modulator sends an AM 
signal. The demodulator receives the signal r(t) that comes across the channel, and 
puts out x t , its best guess on the original information signal x(t). To keep our ˆ ( )
presentation simple, I’ll assume that the input to the demodulator is r(t) = s(t). That is, 
we will ignore all the channel effects and assume an ideal channel where what comes 
out is exactly what came in. 

The idea behind demodulation is simple. Look, for example, at the signal in Figure 
12.4(b). Let’s say that this signal r(t) = s(t) is coming into the demodulator. The top 
dotted line in that picture, called the envelope, is simply A (1 + mx(t)) = Ac (1 + m cosWt).c
If we can find a way to get that top dotted line out of the received r(t)=s(t), then we in 
essence have our information x(t). (All we have to do once we get [the top dotted line]= 
A (1 + mx(t)) = Ac + A mx(t) is subtract Ac and multiply the result by the scalar 1/mA .)c c c

So the key question in demodulation is: Can we build a simple device to get that 
top dotted line from the signal in Figure 12.4(b)? The answer is a resounding yes. 
There are very cheap and simple devices, called envelope detectors, that can easily 
extract the envelope from the s(t). So, AM receivers are called envelope detectors. 

An example of an inexpensive envelope 
detector is shown in Figure 12.6. In this diode 

makes all negative figure, the little triangle, a diode, makes all 
negative values zero, and leaves all the values 0 

positive values untouched. For example, 
with the input of Figure 12.4(a), redrawn in 
Figure 12.7(a), the output from the diode is 
Figure 12.7(b). The resistor (R) and the 
capacitor (C) work together as a low-pass 
filter. The RC low-pass filter cuts out the 
rapid variations in the signal and leaves the 
slow variations intact. That is, for the input of 
Figure 12.7(b), it creates an output of 
approximately that shown in Figure 12.7(c). 
Given the incoming s(t), we’ve got its enve- Low-Pass Filter 
lope pulled out, which means—good Figure 12.6 An implementation of an AM 
news—we’ve pretty much got our x(t). demodulator = envelope detector 

R C 
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k 

(a) 

cos(ωc

r(t) = s(t) 

k 

Ac(1 + mx(t)) 
cos(ωct) 

k 
(c) 

(b) 

output of 

output of 
diode 

Ac

Ac(1 + mx(t)) 

t) high-frequency term 

RC LPF 

(1 + mx(t)) low-frequency term 

Figure 12.7 Workings of envelope detector of Figure 12.6 
(a) input (b) diode output (c) LPF output 
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12.2.4 An Alternative to AM—DSB-SC 

Some use an alternative to AM called double sideband suppressed carrier, which merci­
fully is written and spoken in shorthand using the acronym DSB-SC. 

In AM, we sent 

( ) = A (1 + mx t  s t  ( )) cos  ω t (12.16)c c 

In DSB-SC, we send pretty much the same thing, only we get rid of the “1” and 
the “m”; that is, in DSB-SC, we send 

( ) = A x t  s t  ( )cos ω t (12.17)c c 

In some ways this is a good thing, and in some ways it isn’t. To see its benefits, 
let’s look at the frequency domain, and study the Fourier transform of the DSB-SC sent 
signal s(t)—that is, study S(f). Using simple Fourier transform properties, and the s(t) 
of Equation (12.17), we find 

( ) = A  X  f  S f  c ( )∗ 
 1

2 δ( f − f ) + 1
2 δ( f + fc ) (12.18)c 

c( ) = 
A 
2 X  f  − f ) + X  f  + fc ) (12.19)S f  ( c ( 

So, if X(f) looks the way it’s drawn in Figure 12.8(a), then it follows that S(f) looks 
like Figure 12.8(b). We can see that in DSB-SC, we are not wasting any power sending 
an impulse at ω c (as in AM, which wastes power here, as shown in Figure 12.5). 

But, alas, it was not all good news for DSB-SC. People said: Well, we need a de­
modulator for it—let’s tr y to use the envelope detector. Let’s say x(t) = cos(Wt) (where W 
is very small) as shown in Figure 12.9(a). That means that s(t) = Ac cos(Wt) cos(ω t),c 
which corresponds to the multiplication shown in Figure 12.9(b) and leads to 
s(t) = Ac cos(Wt) cos(ω t) as shown in Figure 12.9(c). Now, let’s look at the envelope ofc 
s(t), which is the dotted line on top of it, shown in Figure 12.9(d). You can clearly see, 
comparing the envelope of Figure 12.9(d) with the x(t) of Figure 12.9(a), that these have 
completely different shapes. In fact, in this case, the envelope of s(t) is |x(t)| and not x(t). 
So, the envelope detector does not work for the DSB-SC signal. This is unfortunate, 
because envelope detectors are so inexpensive. 

Nevertheless, some designers did decide to use DSB-SC. But first, they had to 
come up with a demodulator at the receiver side, to get x(t), given r(t). The demodula­
tor that they found worked well is shown in Figure 12.10. The input coming into the 
demodulator is 

r t  ( ) = A  x t  ( ) = s t  ( ) cos (ω t) (12.20)c c 

This gets multiplied by a cosine term, leading to 
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X(f) 

1 

f 
–fm fm 

(a) 

S(f) 

Ac 
2 

f 
–fc – fm –fc –fc + fm fc – fm fc fc + fm 

(b) 

Figure 12.8 DSB-SC (a) Information signal in frequency domain, X(f) 
(b) Sent signal in frequency domain, S(f) 

′( ) = A x t  r t  ( ) cos (ω t ) ⋅ cos (ω t) (12.21)c c c 

cr t  ( ) 1 cos  (2 ω t ) (12.22)′( ) = 
A x t  + c2 

Next, this signal is passed through a low-pass filter, which cuts out the high-
frequency term, leading to the output 

′′( ) = 
A x t  r t  c ( )  (12.23)
2 

Finally, a multiplication is applied to generate x(t). This demodulator is a little 
more complex than that of AM. DSB-SC gives you a choice—spend less power in 
transmission by using DSB-SC, or use a less expensive receiver by using AM. 
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x(t) 

(c) 

s(t) = x(t) ⋅ Accosωct 
= AccosWt cosωct 

t 

(a) 

(b) 

1 

–1 

x(t) = cosWt 

x(t) = cosWt Accosωct 

Ac 

–Ac 

envelope of s(t) 

t 

s(t) = t 

t 

t 

(d) 

Figure 12.9 (a) Information signal x(t) = cosWt (b) Creating sent signal s(t) 
(c) Sent signal s(t) (d) Envelope of s(t) 
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x(t)
r(t) = s(t)

x xLPF 
r'(t) r"(t)

= Acx(t)cos(ωct) 

cos(ωct) 2/Ac 

Figure 12.10  Demodulator for DSB-SC 
Given r(t) = s(t), it outputs x(t) 

Example 12.2 

Assuming Ac = 4: 

(a) Determine the output (in time) of the DSB-SC modulator when the input 
corresponds to Figure E12.3. 

(b) Determine the output (in frequency) of the DSB-SC modulator when the 
input corresponds to Figure E12.4. 

4

x(t) Figure E12.3 
The input to DSB-SC modulator for (a) 

+1 

t 
2


–1


X(f) 
Figure E12.4 

The input to DSB-SC modulator for (b) 

5 

0 –100Hz 100Hz 

Solution: (a) The output signal corresponds to 

( ) = 4 x t  s t  ( ) cos  ω t (E12.2)c 
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In Figure E12.5, the 4x(t) is drawn as a dotted line, and forms the envelope 
for the signal s(t). A – 4x(t) is also drawn as a dotted line. The signal s(t) is the 
solid “jiggly” line between the two dotted lines. 

(b) The output signal corresponds to 

( ) = 4  X f  f  ) + X f  f  ) (E12.3)s f  ( + c 2 
( − c 

For the X( f ) of Figure E12.4, this S( f ) corresponds to Figure E12.6 

s(t) 

2 4 

4 

–4 

4x(t) 
Figure E12.5 

The DSB-SC output for (a) 

t 

–4x(t) 

S(f) 

10 

f 
–fc – 100 –fc –fc + 100 fc – 100 fc fc + 100 

Figure E12.6 Output of modulator 

12.3 Frequency Modulation (FM) 

To some, FM is a dial on the radio where you can hear love songs, classic rock, or 
greatest hits. To engineers, FM is shorthand for frequency modulation. 
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12.3.1  The Modulator in FM 

The idea in frequency modulation is to map the information x(t) into the fre­
quency of the transmitted signal s(t). Mathematically, what is done is this: Given an 
information bearing signal x(t), you send out over the channel 

( ) = A cos (ω  +θ ( )) (12.24)s t  t tc c 

where 

t 

θ ( ) = K f ∫ x (τ)dτ . (12.25)t 
−∞ 

Looking at this equation, you really can’t tell that the information x(t) is placed in 
the frequency of s(t). So let’s do a little math that will show that x(t) has indeed been 
placed in the frequency of s(t). The frequency of s(t), at any moment in time t, is given 
by 

ω( ) = d (ω  +θ ( )) (12.26)t t tcdt 

t 

t 
dt  

t  K f ∫ x( )dτ


ω( ) = d 
ω  +  τc (12.27) 

−∞  

ω( ) = ω  +  K  x t  ) (12.28)t f (c 

This tells us that at time t, the frequency of the sent signal s(t) is ω c + K  x(t), whichf
indicates that x(t) is determining the frequency of s(t). 

Let’s use pictures to see what is going on in FM. Let’s say we have the informa-
tion-bearing signal x(t) as shown in Figure 12.11(a). Using this, we can determine 
some important information about s(t): 

1. At times when x(t) = –1, the frequency of s(t) is ω(t) = ω c + K  x(t) = ω c – K .f f 

2. At times when x(t) = +1, the frequency of s(t) is ω(t) = ω c + K  x(t) = ω c + K  .f f 

Using this information, we can get the plot of s(t) shown in Figure 12.11(b). Here, we 
see the variation in the frequency of s(t) as a direct result of changes to x(t). 

For another example, take a look at Figures 12.12(a) and (b). There, we see the 
input x(t) = cos(Wt) (where W is a ver y small number). We also see the output in 
Figure 12.12(b)—as x(t) gets bigger, the frequency of s(t) gets bigger, and as x(t) gets 
smaller the frequency of s(t) gets smaller. 
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Figure 12.11 
(a) Information signal x(t) 

(b) Transmitted FM signal s(t) 

Let’s see if we can characterize the sent signal s(t) in the frequency domain—that 
is, let’s see if we can evaluate the Fourier transform of s(t), called S(f ) . To help us out, 
let’s start by rewriting s(t): 

( ) = A cos (ω  +θ ( )) (12.29)s t  t tc c 

A e ω +θ( )}s t  j t  tc( ) = Re{ (12.30)c 

s t  j t  ωc( ) = Re{A e  θ( )  e j t } (12.31)c  
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cosWt 
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Figure 12.12 
(a) Information signal x(t) 
(b) Sent signal s(t) in FM 

ωcj t }( ) = Re{g t e (12.32)s t  ( )  
where g(t) = Ace

jθ(t). Taking the Fourier transform of s(t) and applying properties of the 
Fourier transform, we end up with 

S f  1
2 G  f  − f ) + 1

2 G (−  −  fc ) (12.33)f( ) = ( c 



338 � Chapter Twelve 

t 
j t  twhere G(f)is the Fourier transform of A e θ( )  and θ ( ) = ∫ x(τ)dτ . The relationship c

−∞ 
between G(f)and x(t) is so complex that there is no simple mathematical equation to 
relate the value G(f) to the value X(f)—that means there is no simple equation to relate 
S(f)to X(f). 

In the simple case when x(t) = cos(Wt) and W is small, we can derive an equation 
relating X( f ) to S( f ), but this equation is messy, involving Bessel functions, and I just 
want to offer an introduction to analog communications here. Look in the reference list 
to see a book that covers the joys of Bessel functions. 

Example 12.3 

Draw the output of an FM modulator when the input corresponds to Figure E12.7. 

Solution: The output corresponds to equation (12.24), which shows that the 
output corresponds to a sinusoid with constant amplitude. Equation (12.28) tells 
us that the frequency of the FM output changes linearly with x(t). Putting this 
information together leads to the output plot of Figure E12.8. 

x(t) 

t 

Figure E12.7 Input to FM modulator 

t 

Ac 

–Ac 

s(t) = Ac cos (ωct + θ(t)) 

. . . 

Figure E12.8 Output of FM modulator 
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12.3.2 The Demodulator in FM 

We now know about how the FM modulators work and what they do. At the receiver 
side, you want to build an FM demodulator that gets the received signal r(t) = s(t) and 
turns that back into your information x(t). 

You know that there is no information x(t) in the amplitude of r(t) = s(t)—all the 
information is in the instantaneous frequency ω(t) = ω c + K  x(t). The demodulatorf
works to get ω(t), the instantaneous frequency, out of r(t) = s(t), the received signal. 

A demodulator for an FM signal is shown in Figure 12.13.  First, a limiter is 
applied. The limiter takes r(t) = s(t) and gets rid of all amplitude fluctuations, by simply 
forcing all positive values to +1 and all negative values to –1. The output is called r ′(t). 
The limiter’s operation does not affect the ability to extract the information signal x(t), 
since the information is stored in the frequency (not in the amplitude). Then, the 
signal r ′(t) is passed through a discriminator. The discriminator outputs a value r″(t), 
which is proportional to the instantaneous frequency ω(t). That is, it outputs 

r t  K′′( ) = ω(t ) (12.34) 

′′( ) = K (ω  +  K x t  r t  f ( )) (12.35)c 

Once we have this output, a processor doing a simple subtraction and a scalar 
multiplication creates the output x t .ˆ ( )  

And that, my friends, is FM, its modulation and its demodulation. 

x(t)r'(t)r(t) = s(t) r"(t) 

in 
1 

–1 

out 

L IMITER 

amplitude of output 

of input 

Simple

& 
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f requency
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multiplication 

Figure 12.13  FM demodulator 

12.4 The Superheterodyne Receiver 

The last section of this book has a grand title. The superheterodyne receiver is a stan­
dard AM receiver that you can use to pick up any radio station. Let me explain how 
this receiver works, then we’ll call it a done book. 

Take a look at the top of Figure 12.14. This shows a part of the frequency spec­
trum. Specifically, each peak in the spectrum represents the presence of a radio station 
transmitting its songs and sounds at that frequency. You want to build an inexpensive 
radio which allows you to pick up any radio station that you’d like to listen to. 
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Figure 12.14  The superheterodyne receiver 

The standard construction of such a receiver is shown in Figure 12.14. Let’s say 
that you want to pick up an AM signal at 900 kHz. 

1. To start, you have an antenna, which picks up all the radio signals. 

2. Next, you use three components to get rid of the other radio stations and leave 
you only with the sounds of 900 kHz. 

2a. The first component used to cut out the other radio stations is a tunable RF 
(radio frequency) filter. The RF filter is tuned to 900 kHz, and acts as a 
bandpass filter, as shown in Figure 12.14. It cuts down (but not out) the 
radio signals at other frequencies—the reason we don’t use a very sharp 
bandpass filter here that cuts out all the other radio stations is because it is 
expensive to build a very sharp filter that is tunable. 

2b. Next, we apply a mixer, which is just a fancy way to say that we multiply 
the signal by a cosine waveform with frequency fL. Multiplication by a 
cosine causes the incoming signal to shift in frequency by fL. By tuning the 
dial to 900 MHz, the cosine waveform frequency f  is set to shift the fre-L
quency of the 900 MHz station to 455 MHz. 
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2c. A very sharp filter, called the IF (intermediate frequency) filter, is applied to 
the incoming signal. This filter is a ver y sharp bandpass filter at 455 MHz, 
as shown in Figure 12.14. With the desired AM signal now at 455 MHz, it 
makes it through the IF filter—all the other radio frequencies are cut out. 

3. Now you have the AM signal you want with all those other radio signals cut
out. So you put your AM signal through an envelope detector, which extracts the 
sound information x(t) from the AM signal. 

12.5 Summary 

This is it. The end of the chapter. The end of a long journey through a book. In this 
chapter, we briefly looked at analog communication systems. We looked at AM and 
FM modulation, and we saw how to detect AM and FM signals. We even “built” a 
receiver that allows you to listen to your favorite radio station. 

It is my sincerest hope that this book provided you with a solid understanding of 
the basics of telecommunications systems engineering, without the mountain of 
“muck” created by intimidating attitudes and big words. Life is simple, if it’s just 
explained that way. 
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Problems 

1. Figure Q12.1 shows the input to a modulator. Determine the output if 

(a) the modulator is an AM modulator. 

(b) the modulator is an FM modulator. 

(c) the modulator is a DSB-SC modulator. 

t 
3.5321 

x(t) 

. . . 

Figure Q12.1  Modulator input 

2. Figure Q12.2 shows the input to a modulator. Determine the output (in the 
frequency domain) if 

(a) the modulator is an AM modulator. 

(b) the modulator is a DSB-SC modulator. 

X(f) 

1 

-2.fa fa fa 2.fa 

Figure Q12.2 Modulator input 

f 

3. Given that the signal x(t) in Figure Q12.3 is input to a DSB-SC modulator: 

(a) Determine the output of the modulator. 

(b) Assume this signal is sent over a channel which is ideal (the received 
signal equals the sent signal). 
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(1) Determine the output of the demodulator when the demodulator is a 
perfect envelope detector. 

(2) Determine the output of the demodulator when the demodulator is a 
mixer, low-pass filter, and processing device as described in the chap­
ter. 

x(t) 
Figure Q12.3 DSB-SC input 

1 

1 
–1 

2 3 

4. Given the input in (Q12.1), provide an analytical equation for the modulator 
output when the modulator is 

tt ,0  ≤ < 1 
x t  t( ) = 2 − t ,1  <  <  2 (Q12.1)0  ,  else  

(a) an AM modulator 

(b) a DSB-SC modulator 

(c) an FM modulator 

5. An AM receiver is tuned to pick up the station at 600 MHz. Draw a block 
diagram of the AM receiver used to detect this signal. 
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